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RESUMEN

El presente trabajo de tesis propone un modelo matemático y computacional

de fluctuaciones naturales en la activación muscular. Este modelo busca car-

acterizar el ruido y la variabilidad asociada a la activación de los músculos

encargados de la fonación, de forma de poder evaluar su impacto en un modelo

numérico de las cuerdas vocales de orden reducido. La formulación matemática

del modelo es descrita usando como base distintos supuestos fisiológicamente

válidos respecto a la generación de los impulsos eléctricos a nivel neuronal y

de fibras musculares. Para evaluar el esquema propuesto, se realiza un anális

paramétrico en conjunto con un modelo de cuerdas vocales conocido como

body-cover model (BCM), el cual es controlado por una serie de parámetros

dependientes de la activación muscular. Las fluctuaciones inherentes en la ac-

tivación muscular se caracterizan por tener un ancho de banda que vaŕıa con

la frecuencia de disparo, además de presentar componentes de baja frecuen-

cia en cada nivel. Al aplicar el mencionado esquema de activación al modelo

producción vocal, se observan cambios dinámicos en el comportamiento de

las cuerdas, en que el coeficiente de variación no presenta un comportamiento

uniforme con la activación muscular. Por otra parte, las perturbaciones que se

observan en las salidas del modelo de cuerdas vocales se encuentran dentro de

rangos saludables. Los componentes aleatorios en el modelo muscular ejercen

cambios tanto a nivel de estructura fina como en la capacidad de controlar

la frecuencia fundamental de oscilación de las cuerdas vocales. El modelo

propuesto constituye un novedoso avance para controlar modelos de cuerdas

vocales de orden reducido en condiciones normales de voz, y también se puede

extender a condiciones neuropatológicas.
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ABSTRACT

A physiologically-based scheme that incorporates inherent neurological fluctu-

ations in the activation of intrinsic laryngeal muscles into a lumped-element

vocal fold model is proposed. Herein, muscles are activated through a combi-

nation of neural firing rate and recruitment of additional motor units, both of

which have stochastic components. The mathematical framework and underly-

ing physiological assumptions are described, and the effects of the fluctuations

are tested via a parametric analysis using a body-cover model of the vocal folds.

The inherent muscle activation fluctuations have a bandwidth that varies with

the firing rate yielding both low and high frequency components. When apply-

ing the proposed fluctuation scheme to the voice production model, changes

in the dynamic behavior of the vocal folds are observed, where the coefficient

of variation is not uniform with muscle activation. Perturbations arising in

the vocal fold model output using the proposed stochastic muscle activation

scheme are within the normal range. The stochastic components of muscle ac-

tivation influence both the fine structure variability and the ability to achieve a

target value for pitch control. These components can have a significant impact

on the vocal fold parameters, as well as the outputs of the voice production

model. The proposed model constitutes a novel and physiologically-based ap-

proach for controlling lumped-element models for normal voice production and

can be extended to explore neuropathological conditions.

xi





Chapter 1

INTRODUCTION

1.1 Overview

Phonation is the primary physiological process of speech production, in which

the coordinated activation of breathing and laryngeal muscles control the in-

teraction between airflow, sound, and the vibratory activity of the vocal folds

(VF). As a result, phonation determines the distinctive features of the speech

production, defining the fundamental frequency (f0), amplitude, and quality

among others.

A significant amount of data describing voice production from research and

clinical perspectives have been collected in the last decades using imaging and

signal recording techniques. These efforts have allowed for the development

of mathematical models able to reproduce different phonatory mechanism in

normal and altered conditions. Of particular value has been the development

of lumped-element models of the VF, since they can efficiently represent a

wide range of gestures and voice quality, including the self-oscillating behavior

and the modal response of the vibrating VFs [7] [8] [9]. Lumped-element VF

models can be coupled with models of aerodynamic interactions and acoustical

loads (sub and supraglotally), which results in a complete framework able to

simulate tthe physical phenomena of speech production. [10].

Reduced order VF models can also mimic complex pathological conditions,

including incomplete glottal closure [11] and nerve paralysis [12] [13], which

opens the possibility of using these models in the study, diagnosis, and/or

treatment of VF pathologies [14]. However, a number of gaps need to be filled

before modeling can become a well-established clinical tool. One of the most

critical points that lumped-element models are lacking is their relationship

with the nervous system, which ultimately determines the contractile activity

of the muscle. Efforts have been made to unfold the physiological relationship

between laryngeal muscle activation and VF configuration for reduced order

1



2 CHAPTER 1. INTRODUCTION

models of the VF [15]. However, there are numerous assumptions in this

initial study that need to be revisited. For instance, the effect of antagonistic

muscles is overly simplified and the number of intrinsic laryngeal muscles that

the scheme effectively controls is reduced to two. More importantly for the

present study, the way the muscles are activated in [15] does not have a neural

basis, which in turn results in fixed deterministic muscle activations. These

limitations reduce the physiological relevance of reduced order VF models as

well as their potential clinical impact.

In this thesis, a new neurophysiological scheme for muscle activation is

proposed. This approach significantly extends prior efforts with the aim of

introducing a neurophysiological description in the control of muscle behavior

for a reduced order model of the vocal folds. The scheme features interspike

interval variability [16], interactions between different types of muscle fibers,

muscular recruitment [17] [18] using recruitment of motor units (MU) [19], and

it is constructed using electro-physiologically valid parameters measured in

laryngeal muscles. The proposed approach intends to capture more faithfully

the main characteristics of the muscles, and therefore generates a more realistic

representation of the muscle activation signal.

1.2 Motivation

This study focuses on developing a scheme that accounts for neurological char-

acteristics of muscles into a numeric model of the VFs.

Several models have been developed to describe the neuro basis of force

output during the muscle activation in the human body. For this purpose,

the electrical and contractile properties of the muscle fibers were used in com-

bination with the spatio-temporal electrical patterns of the neural popula-

tion innervating the muscle. These models mimic several physiological pro-

cesses of a generic muscle, which consider an arbitrary size, number of fibers,

etc. [20] [21] [22], as well as the behavior of specific muscles, (e.g. the ones lo-

cated in the arm) [23] [24], including the laryngeal musculature [4]. The latter

study could be considered the closest approach to model neurological laryngeal

muscle behavior. In spite of being a pioneer study, there are various limitations

in this approach [4] that need to be pointed out, including the disregard of

the intricated relationships between the VFs driving forces, VF configuration,

and vibration patterns that led to an overly simplified relationship between

force and perturbation in f0, the lack of muscle recruitment, and the oversight
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of the effect of other laryngeal muscles and the interactions among them. On

the other hand, there is a scheme that relates muscular activation with pa-

rameters of a specific numerical model known as the body-cover model [15].

This scheme is based on a set of equations and physiological rules that define

the parameters such as VF length, spring constant and masses, among oth-

ers. However, the activations described in the work mentioned above are fixed

constants, and therefore do not consider any natural muscular fluctuations

introduced by the central nervous system. Therefore, a model that considers

natural neurological fluctuations of muscular activation over time is lacking.

In addition, this model needs to be based upon valid physiological assump-

tions, hence reflecting neurological characteristics of muscles. Although there

are some models of force generation based on neural activity [20], these models

have arbitrary parameters and are not adequate to descrube laryngeal muscles

behavoir.
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1.3 Objectives and expected contribution

The overall objective of this thesis is to develop a novel framework for a muscle

activation signal with natural random fluctuations. The proposed framework

will be used to model two laryngeal muscles which are responsible of phona-

tion and will be applied in a voice production model, in a way that inherent

neurological fluctuations of laryngeal muscles are incorporated into the voice

modeling dynamics. With this in mind, we proceed to do a parametric anal-

ysis of the vocal fold model to evaluate the variability in the voice output

given different muscle configurations. As such, the following specific aims are

proposed:

1) To propose a laryngeal muscular activation model based on physiologi-

cally valid assumptions. The model should be able to generate a muscle

activation signal that has random fluctuations over time.

2) To characterize the noise of the activation signal, and its variability at

different levels of activation. This will be used to describe the effects

produced on the VF model.

3) To evaluate the impact of the muscle activation model on a numerical

model of VF, based upon its dynamic, aerodynamic, and acoustic behav-

ior.

The work focuses mainly on laryngeal muscles, although the same princi-

ples could be used to model other muscles involved in speech production. The

complete framework, with the laryngeal muscle activation model and the nu-

merical model of VF, is expected to simulate conditions that have never been

explored before. In addition, it is expected that the approach can be used

to investigate the voice modeling of relevant pathologies like muscle tension

dysphonia and Parkinson’s disease.



Chapter 2

BACKGROUND

In this chapter, a brief description of the voice production process is presented.

Likewise, relevant aspects of muscle physiology, and particularly of laryngeal

muscles, are presented. In addition, a review of the typical numerical mod-

els of vocal folds and muscle activation methods are presented, along with a

description of the models used in the present work.

2.1 Fundamentals of voice production

The primary process that involves the production of voice is phonation. Phona-

tion is a technical term used to describe the oscillation of the VF [25]. It

includes a complex interaction between physiological, biomechanical, physi-

cal, and neurological processes, which together determine voice characteristics

like pitch, intensity, etc. Phonation occurs in the larynx, an organ located in

the neck, where vocal folds are housed. Vocal folds (or vocal chords) are two

membranes stretched from back to front across the larynx. They form a space

between them known as glottis, that allows for air to pass. By vibrating, vocal

folds modulate or pulsate the flow of air expelled from the lungs, thus resulting

in a dipole sound source that accounts for most of the acoustic energy during

speech production [25].

The most accepted theory of phonation is the myoelastic theory [26], which

describes the phenomenon as a system that oscillates as a result of the interac-

tion between aerodynamic flow and pressures coming from the lungs. In this

system, the lungs act as the primary source of energy, storing it in the form of

air through inhalation. During inhalation, lung capacity increases, producing

a negative pressure that drives air into the lungs. While this occurs, vocal

folds are separated (abduction process), allowing air to pass freely through

the glottis. To induce phonation, air is expelled from the lungs while the vocal

folds close together (adduction process), creating a narrow space in which air

5



6 CHAPTER 2. BACKGROUND

can pass. The adduction of vocal folds as air is expelled producing an increas-

ing pressure below the glottis, which leads to a self-oscillatory movement of

the vocal folds. The oscillation of vocal folds induces a pulsating airflow that

is later filtered by the vocal tract and finally radiated by the mouth [25].

The oscillation cycle of vocal folds is produced as a result of a recursive

process during exhalation. When the adduction of vocal folds is produced, a

convergent geometry takes place. This geometry allows for a Bernoulli flow

phenomenon below the glottis, which drives the vocal folds apart. This induces

a change in the geometry, up to a divergent configuration. In this configura-

tion, a jet flow regime is established, which reduce pressure. The reduction

in pressure combined with the elastic forces of the tissue restores the initial

convergent configuration, thus completing the cycle [26].

Figure 2.1 shows a view of the coronal (frontal) angle of the larynx. As it

can be seen, the vocal folds are located in the narrowest portion of the airway.

Above the folds, the ventricular folds can be seen. The ventricular folds, also

known as false chords, correspond to a muscular structure that usually does not

participate in the phonation process. However, it can oscillate due to various

reasons. An unhealthy use of the voice (like muscle tension dysphonia) can

lead to a vibrational effect of the false chords [27]. Similarly, in some particular

singing techniques, like belting, the ventricular folds are used to narrow the

air space, allowing for diverse acoustical properties [28] . Similarly, in metal

singing techniques like growls [29], the false chords are used to produce the

characteristic harsh sound of the voice.

Figure 2.1: Coronal section of the larynx, showing the inner structure of the larynx.

Vocal folds are located at the narrowest section of the airway. When the air passes

through, the vocal chords oscillate as a result of the aerodynamic interaction of the

strcuture with the air flow. Figure from National Cancer Institute. [1]
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The vocal folds are comprised of multiple layers, each with different char-

acteristics that affect the pattern of vibration. Figure 2.2 shows the different

layers that compose them. The inner layer is formed of muscular tissue, which

corresponds to the fibers of the thyroarytenoid muscle. This corresponds to a

significant portion of the vocal folds, with a thickness of approximately 7 to

8 mm [30]. Outside the muscle is the lamina propia, a layered system that

can be sectioned into three sublayers: the superficial, middle, and deep layers.

The deep layer is made up primarily of collagen fibers, which have a protein-

based structure that limits elongation. The intermediate layer on the other

side is made up mostly of elastin fibers. Elastin fibers are made of a particular

type of protein structure that allows for ample elongation, similar to a rubber

band. The superficial layer is also composed of elastin fibers, surrounded by

interstitial fluids, being also less uniformly oriented than the ones in the in-

termediate layer [30]. Finally, the outermost layer is a thin skin made up of

a stratified squamous epithelium [31]. The epithelium encapsulates a softer,

fluid-like tissue. Together, these five layers structure a scheme known as the

five-layer division [32].

Lamina propia

Superficial layer

Intermediate layer

Deep layer
Muscle fibers

Muscle fascicles

Thyroarytenoid muscle

Epithelium

Figure 2.2: Schematic of a coronal section through a vocal chord, showing the differ-

ent tissue layers. The outermost layer is the epithelium, which act as a sheat for the

lamina propia. The lamina propia is comprised of three sub-layers, the superficial,

middle, and deep layers. Finally, the innermost layer is the thyroarytenoid muscle

itself.

Different layering paradigms are also used, depending on the physiological

and physical properties that need to be described. For example, in a three-

layer scheme, the epithelium and the superficial layer of the lamina propia

are grouped in a layer labeled as mucosa, whereas the remaining layers of the

lamina propia, the intermediate and deep layers, are arranged in the ligament
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layer. Finally, the muscle layers refer to the thyroarytenoid layer of the vocal

folds. Another paradigm of grouping layers is the two-layer configuration. In

this scheme, biomechanical properties of the layers are taken into account,

grouping the muscular and deep layer of the lamina propia, given their limited

elongation properties. This inner layer is known as the body. The remaining

layers, the intermediate, superficial and epithelium layers, more elastic than

the former ones, are grouped in the cover layer. The two-layer scheme will be

mentioned again in a further section to describe a mathematical model that is

based in this configuration [10].

2.2 Brief review of vocal fold models

A typical simulation of VF vibration is carried out for two reasons. Either it is

used for voice synthesis, or to model a specific aspect of the voice production.

Depending on the level of detail required, the kinematic description of the

VF oscillation can vary from simple models to highly complex and detailed

models, each having its different advantages and disadvantages. According

to Titze’s model classification [26], numerical models of voice production can

be classified into four groups. These are: (1) Low-dimensional models, (2)

high-dimensional models, (3) continuum models and (4) finite models. Low-

dimensional models use a lumped-element representation of vocal folds, intend-

ing to capture the fundamental aspects of phonation. These kinds of models

lack a correct description of the glottal opening and other biological elements.

Despite this limitation, they capture most the energy and relevant physics of

voice production and have a low computational cost, this allowing for para-

metric analyses and optimization procedures [33]. High-dimensional models

are a natural extension of low-dimensional representation. They increase the

number of lumped-element models, which allows for a better description of

the VF oscillation at the expense of a higher computational cost. The latter

is usually implemented by finite difference methods, in contrast with the next

methods. Continuum models extend the number of lumped-elements to cre-

ate a solid body, therefore being able to represent an elastic continuum that

is solved for analytically.. Finally, finite element models provide another ap-

proach to solve a continuum mechanics problems. They have the advantage

of being able to handle tissue elements of variable sizes and shapes. By using

interpolation techniques, the models become more stable and can better rep-

resent the biological structure, at the expense of a very large computational
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load.

The lumped-element representation of VF has received particular atten-

tion, given the simple but complete framework that can efficiently represent

a wide range of phonation scenarios. These models are structured as a collec-

tion of mass-spring-damper systems that interact with aerodynamic flows or

acoustical loads. These models are coupled with a representation of the vocal

tract, resulting in a complete and straightforward framework that can simulate

the transmission and propagation of acoustic waves within the vocal tract, the

subglottal system, and the biological tissue. As said before, the complexity of

the system can be as simple as one mass, going to up to three masses for the

reduced-order models, or as complex as multiple masses distributed in differ-

ent layers, for the high-order descriptions. With more lumped elements, the

degrees of freedom increase, better capturing the diverse aspects of the phe-

nomenon, but also increasing the computational cost and overall complexity.

For more details on specific configurations of VF models, refer to the review

by Erath et al. [7].

Low dimensional models have proven to be a handy tool to understand

the fundamental mechanisms of speech. They have been used for describing

the VF production phenomena [34] [9] [7] and synthesizing natural sounding

voices [8] [35] [11], including sustained vowels [36] and running speech [37].

These models have also been used to model pathological voice conditions,

including incomplete glottal closure [38] and nerve paralysis [12] [13]. Modeling

pathologies allow for VF models to be used in clinical assessment of vocal

folds [14].

For the purposes of this research, a particular type of low-dimension lumped

element model will be used: The Body-Cover Model (BCM). The BCM [10]

considers a two-layer configuration: the body with one mass, and the cover

with two masses (superior and inferior). The model considers a set of param-

eters like vibratory masses (mu, ml, mb), their initial positions (xu0, xl0), the

spring constants (ku, kl, kb, kc), and vocal fold length and thickness (L, T ),

among others. A diagram of the BCM is presented in Figure 2.3.

As mentioned earlier, the body-cover can be used to describe the vocal fold

structure. The principal assumption in the model is that the vocal fold can

be divided into two tissue layers with different mechanical properties. As said

before, these two layers are the body and the cover layers (see Figure 2.3).

In his work, Hirano [39] suggested that the vocal fold should be treated as a

double-structured vibrator whose stiffness parameters should be based on the
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Glottal midline

Trachea

Vocal tract

Figure 2.3: Body-Cover Model schematic. mu and ml represent the superior and

inferior masses of the cover layer, whereas mb correspond to the body mass.

relative actions of the thyroarytenoid (TA) and cricothyroid (CT) muscles.

Based on this concept, the body-cover model was conceived by Titze and

Story [10]. The body-layer was represented as a mass (mb) attached to the

thyroid wall through a spring (kb), whereas the cover layer was described as

two masses (mu, ml), each attached to the body mass with springs (ku, kl).

Both cover masses are also attached between themselves through a coupling

spring (kc), which allows for vertical motion. A brief mathematical description

of the body-cover model is summarized next:

• Equations of motion For the three masses, the equations of motion are

written in terms of the coupling forces and other external driving forces

that are applied on each mass.

Fu = muẍu = Fku + Fdu − FkcFeu + FuCol (2.2.1)

Fl = mlẍl = Fkl + Fdl + FkcFel + FuCol (2.2.2)

Fb = mbẍb = Fkb + Fdb − [Fku + Fdl + Fkl + Fdl] , (2.2.3)

where Fu, Fl and Fb are the forces of the upper, lower (cover) and body

masses respectively, written in terms of the derivatives of their positions.
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Also, Fdu, Fdl and Fdb are the forces due to damping, Fku, Fkl and Fkb are

the lateral spring forces. FuCol and FlCol are the forces generated only

during collision with the opposite vocal fold, Feu and Fel are the external

forces generated by the glottal flow, and Fkc corresponds to the spring

force due to the coupling of mu and ml. The equations are written in

terms of the derivatives of their displacements xu, xl and xb, considering

the initial positions xu0, xl0 and xb0. For more details on each of the

driving forces, please refer to the original paper [10].

• Pressure equations

In the BCM, the three-mass system interacts with driving forces from

aerodynamic source via the glottal area. Intraglottal pressure exerts a

force on the upper and lower cover masses, producing oscillation. Gen-

erally speaking, the modeling of the interaction between the masses and

intraglottal pressure considers the following assumptions:

1) The flow detaches at the minimum glottal diameter.

2) A Bernoulli-type flow exists from the subglottal region to the mini-

mum glottal diameter.

3) A constant diameter jet exists from the minimum diameter to the

glottal exit. Pressure is considered to be constant in this region.

4) Pressure recovery after glottal exit follows equations derived by

Ishizaka and Matsudaira (1972) [8].

Therefore, there are two principal equations for describing the two pos-

sible flow regimes. For the Bernoulli regime:

P = Ps − (Ps − Pi)×
a−2 − a−2s

a−2m (1− ke)− a−2s
, (2.2.4)

and for the Jet regime:

P = Pi − (Ps − Pi)×
kea
−2
m

a−2m (1− ke)− a−2s
, (2.2.5)

where P is the pressure at any point of the upstream area and Ps and

Pi are the subglottal and supraglottal pressures respectively. Also, a is

the cross-sectional area of the channel, as is the subglottal duct area, am
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is the minimum cross-sectional area within the glottis, and ke is the exit

pressure coefficient. During the oscillation of the VF, the flow can be

blocked if collisions were to occur between the masses. During collision,

pressures are computed as:

P = Ps below the collision (2.2.6)

P = 0 within the collision (2.2.7)

P = Pi above the collision (2.2.8)

For more details on the pressure equations, refer to the original paper [10].

• Flow equations

A vocal tract is also coupled into the three-mass model, including models

for the subglottal, pharyngeal, oral, and nasal sections. This means that

a wave reflection is produced, changing the characteristics of the flow.

Reflected pressures p+s and p−s are computed as follows:

p−s = p+s − (ρc/As)u (2.2.9)

p+s = p−s + (ρc/Ai)u , (2.2.10)

in which p+s and p−s are the incident pressures above and below the glottis,

respectively. ρ is the density of air, c the speed of sound, and As and

Ai are the areas of the first sections of the subglottal and supraglottal

ducts, respectively. u corresponds to the flow through the glottis, which

can be obtained upon equations given by Titze [40].

The BCM was chosen for this work mainly for two reasons. First, although

it is a simple model, it allows for very realistic reproduction of the dynamical

behavior of the vocal folds. This simplicity translates into a low computational

cost, which is ideal for working with a parametric analysis. Second, its model

parameters (masses, spring constants, etc.) can be determined through a series

of equations and rules depending on laryngeal muscle activation [15]. These

rules are crucial to study how muscle variability affect the vocal folds dynamics.

To reduce the number of control parameters, the normalized activations

of the cricothyroid activity (aCT ), the thyroarytenoid activity (aTA), and the

lateral cricoarytenoid activity (aLCA) were considered in [10]. The effect of

the posterior cricoarytenoid muscles was included by allowing aLCA to become
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negative, and finally, the effect of the interarytenoid muscle was neglected. A

summary of the physiological rules is presented bellow:

• Elongation Rule: The elongation rule expresses the vocal fold length L

in terms of three activations. The longitudinal vocal fold strain ε is also

presented in equation 2.2.11, as further parameters also depend on this

value.

ε = G(RaCT − aTA)−HaLCA (2.2.11)

L = L0 [1 + ε] (2.2.12)

In equation 2.2.11 G, R and H are the gain of elongation, torque ratio

and adductory strain factor respectively. In equation 2.2.12 L0 is the

resting length. All these coefficients are assigned according to previous

studies. See [15] for more details.

• Nodal Point Rule: The nodal point zn controls upper and lower ampli-

tudes of vibration. It depends only on activation of TA:

zn = (1 + aTA) · T/3 (2.2.13)

where T is vocal fold thickness.

• Thickness Rule: Vocal fold thickness T increases with its shortening,

which implies that, in a sense, it is inversely proportional to VF length

L. In this case, the relationship is better defined using VF strain ε.

T =
1 + aTA
1 + 0.8ε

(2.2.14)

where T0 is vibrating thickness at resting state. As with VF length, T

depends on activations of all three laryngeal muscles.

• Depth Rule: The depth rule Db for the body layer and Dc for the cover

layer are defined according to:

Db =
aTADmus + 0.5Dlig

1 + 0.2ε
(2.2.15)

Dc =
Dmuc + 0.5Dlig

1 + 0.2ε
(2.2.16)

in which Dmus, Dmuc and Dlig are the muscular, mucosa and ligament

depths respectively. These parameters are obtained according to clinical

observations.
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• Adduction Rule: The adduction rule controls the glottal half-width ξ02
which establishes how close the vocal process is. It has been deduced

using fibroscopic measurements.

ξ02 = 0.25L0(1− 2aLCA) (2.2.17)

For a value of aLCA = 0.5, vocal folds are “just touching”. Thereby, if

aLCA > 0.5 then the vocal process is pressed together (actually, chords

are overlapping), and if aLCA < 0.5 it implies that folds are separated.

This is one of the most sensitive parameters in the whole system, where

in little variations on the LCA activation can produce significant changes

in the behavior of the system.

• Convergence Rule: The convergence rule establishes a relationship for

the separation of the lower portion of the vocal process.

ξc = ξ01 − ξ02 = T (0.05− 0.15aTA) (2.2.18)

To reach self-sustained oscillations in the BCM, a nearly vertical medial

surface is necessary. This produces a “nearly rectangular” section for the

glottis, which is ideal for phonation in a physical model [41].

For details referring to the model and the activation rules, refer to Titze’s

original papers [10] [15].

2.3 Muscle physiology

2.3.1 Basic concepts

There are three major muscle groups: cardiac, smooth and skeletal. Cardiac

muscles are found in the walls of the heart, and are in charge of involuntary

contractions in this organ. Their most relevant characteristic is that they con-

tract in single twitches. On the other hand, smooth muscles, which are found

in organs such as the stomach, intestines, and uterus. They have different

mechanical properties depending on their function and type. Finally, skeletal

muscles, which are responsible for most voluntary contractions on the body.

They differ from cardiac muscles in the sense that voluntary nerves control

them, generating multiple twitch contractions depending on the frequency of

stimulation. Continuous contractions can build up to a maximum tension,
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known as tetanization. Movement is produced by the action of skeletal mus-

cles, being therefore bound into bones to provide support. Biceps, extra-ocular

muscles and laryngeal muscles are examples of skeletal muscles [42].

Muscles are structurally composed of fibers. Fibers within a muscle are

grouped in bundles known as fasciculi, of various sizes depending on the mus-

cle. Space between fasciculi is filled with a strong connective tissue that keeps

together the whole structure. Fibers within fasciculi are also filled with another

type of connective tissue. A fiber itself is a specific type of cell, composed of

many nuclei and a longitudinal structure called myofibril. Myofibrils are long

chains of sarcomeres, which corresponds to the contractile unit of the fiber [42].

The smallest functional element in a muscle is the Motor Unit (MU). A MU

is comprised of a motor neuron and all the muscle fibers innervated by its axon

[43]. Muscles develop force through the combined effect of the contractions of

individual fibers, which are triggered as a response to trains of action potentials

(or spikes) transmitted to the muscle fibers by motor axons. Motor Units

operate as an ensemble, working in conjunction to create stronger contractions

and force.

Not all MU are the same. First, the number of fibers per motor neuron

vary in MU in the same muscle, and differ even more from muscle to muscle;

thereby defining the innervation ratio, which is the number of mean fibers

per motor unit. As a general rule, muscles with low innervation ratio have

more control over the force output. For example, biceps muscles in the arms

have over thousand fibers per motor neuron, while extra-ocular muscles have

a mean of ten. On the other hand, MUs in a muscle can also be different

depending on the type of fibers innervated by the motor axon. In an arbitrary

MU, all the fibers innervated are of the same kind, leading to a classification

of motor units based on the fatigability and contractile speed [44] [45]. If an

MU does not exhibit “sag” (decline in force after the initial increase during

unfused tetanic stimulation) then it is classified as slow contracting, or type S.

However, if an MU does exhibit sag, then it is denoted as fast contracting, or

type F. Additionally, type F motor units can also be subclassified depending

on fatigue properties, being fast to fatigue (type FF) or fatigue-resistant (type

FR). It is also possible to classify motor units based on their histochemical

properties, but this is not of real interest for this study.

The central nervous system controls the muscle contraction through MU

by two primary mechanisms: (1) successive action potentials (spike train)

which can be measured as a discharge or fire rate, and (2) the recruitment and
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derecruitment processes which regulate the number of active MU [46] [47] [48].

By modifying the firing rate, the nervous system can control the number of

successive twitches that are summed at a single fiber level; and by adding

more active MU, then more fibers are incorporated in the contraction process,

increasing the resulting force.

The motor unit recruitment is not arbitrary, and it follows an orderly se-

quence based on the fiber classification previously mentioned. For low force

outputs, slow-twitch motor units are recruited first; and as more force is re-

quired, fast-twitch motor units begin to be recruited. As a general rule, this

means that type S motor units are activated before type F motor units [19] [17].

This is known as the size principle for motor unit recruitment [18].

As it has been previously mentioned, motor unit firing rate determines the

contraction level at single fiber level. There are many factors like, conduction

velocity and post-synaptic potentials, that affect the timing in which action

potentials are generated. This variability in neuronal discharge is usually de-

scribed in terms of the times between successive action potentials, or Inter

Spike Intervals (ISI). For motoneurons in muscles, the coefficient of variance

(CV) for the ISI ranges from 10% to 30% during voluntary contractions ac-

cording to some experiments [49] [50]. The term synaptic noise is commonly

used to refer to the random fluctuations in membrane potentials, whereas tiny

variations on the spike trains that arrive at a motoneuron population are de-

scribed as low-frequency oscillations of the synaptic input. Ultimately, these

neuronal fluctuations produce variations in the force output, which are par-

tially associated to ISI variability [16], and also with low-frequency oscillations

presented in the synaptic input [51] [52].

2.3.2 Laryngeal Muscles

Regarding voice production, the main anatomical elements that determine the

sound output, are the chest, neck and the head. Therefore, muscles in lungs,

vocal tract, larynx, pharynx and oral cavity determine the different charac-

teristics of the voice. From an oscillatory perspective, the most important

muscles are located in the larynx (intrinsic laryngeal muscles), in which vocal

folds are housed. Vocal folds vibrate as result of the interaction of the tissue

with the air flow coming from the lungs. The vibration of the vocal folds is

the one which gives the voice the oscillatory and periodicity properties, such

as pitch; hence the importance of the larynx in the voice production process.

The larynx is an organ situated in the neck, connecting the inferior part
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of the pharynx with the trachea and it is involved in actions like breathing,

phonation and also protecting the trachea against food aspiration. The lar-

ynx is composed by 6 cartilages, three single: thyroid, cricoid and epiglottis ;

and three paired: arytenoid, corniculate and cuneiform. On the other side,

muscles in the larynx can be classified into two groups, extrinsic and intrinsic.

Extrinsic muscles connect the larynx to other external structures and organs,

like the hyoid bone; whereas intrinsic muscles interconnect the cartilages of the

larynx. Figure 2.4 presents a lateral, anterior and posterior view of the larynx.

There are five intrinsic laryngeal muscles, each responsible for connecting two

of the previously mentioned cartilages [32].

(a) (b)

Figure 2.4: Anterior, posterior and sagital planes of the larynx. Figure from

Anatomy of Larynx, University of Liverpool website [2]

The thyroarytenoid (TA) is a paired muscle that connects the thyroid with

the arytenoid cartilages. They comprise most of the structure of the vocal

chord itself, and the resulting contraction of this muscle draw the arytenoid

cartilages forward. By doing so, the muscle stiffens and the VF shorten. In-

terestingly, the TA shows a great difference in phenotype compared with limb

muscles [53].

The cricothyroid (CT) is also a paired muscle, and is responsible of vocal

chords tension, producing elongation in anteroposterior direction. By control-

ling the length of the cords, the CT is considered one of the primary pitch

control muscles [54]. The cricothyroid is the only one of the intrinsic muscles

that is innerved by the superior laryngeal nerve (SLN).

The lateral cricoarytenoid (LCA) is another paired muscle that functions

as an adductor by drawing the arytenoids forward and medially. It brings the
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Table 2.1: Reported contraction times (in miliseconds) for the thyroarytenoid (TA),

cricothyroid (CT), lateral cricoarytenoid (LCA) and posterior cricoarytenoid (PCA)

muscles of various species

Species TA (ms) CT (ms) LCA (ms) PCA (ms) Reference

Rat - 7.2 - 3.4
Hinrichsen &

Dulhunty (1982) [60]

Rabbit 6.5 23-30 - - Hall-Craggs (1968) [63]

Cat 22 52.8 - - Hast (1967) [58]

21 44 - 22 Hirose et al (1969) [59]

Dog 14 35 16 30
Martensson &

Skoglund (1964) [3]

14 39 - - Hast (1966) [55]

- - - 33.2 Cooperet al (1994) [56]

24 - - 33.5
Perlman &

Alipour-Haghighi (1988) [57]

Squirrel monkey 13.2 18.8 - - Hast (1969) [62]

Rhesus macaque 14 36.4 - - Hast (1969) [62]

Gibbon 16 39 - - Hast (1969) [62]

VF together, and also produce rotation on the arytenoids.

The posterior cricoarytenoid (PCA) is a paired muscle that functions as

the primary abductor of the VF. It brings the VF away from the midline,

opposing the action of the LCA. Both muscles -LCA and PCA- work as an

agonist-antagonist pair, which means that their actions oppose each other.

Finally, the interarytenoid (IA) is a muscle that is comprised of two parts:

The traverse component (unpaired) and The oblique part (paired). The prin-

cipal function of the IA is to aid the LCA in his adduction function, closing

the glottis. In particular, the IA is responsible for sealing off the posterior

glottis.

Contraction properties of laryngeal muscles have been studied in mammals

like dogs [3] [55] [56] [57], cats [58] [59], rats [60], and some primates [61]

[62]. Mean contraction times for intrinsic laryngeal muscles are reported and

summarised in Table 2.1.

From this table, we observe that contraction times of these muscles are

influenced by the body mass of the animal. For smaller species, contraction

times tend to be shorter. Second, contraction times for the TA muscle tend

to be shorter that the other muscles, being in the range of vast extraocular
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Table 2.2: Percentages of type I (slow twitch oxidative) fibers in the thyroarytenoid

(TA), cricothyroid (CT), lateral cricoarytenoid (LCA) and posterior cricoarytenoid

(PCA) muscles of various species, including humans. For some species, the pro-

portion in the TA muscle is reported considering the lateral and medialis division

respectively

Species TA (ms) CT (ms) LCA (ms) PCA (ms) Reference

Rat 0 - 10 DelGaudio et al. (1995)

- 16 - 2.7
Hinrichsen &

Dulhunty (1982) [60]

Rabbit 0 35 - 40
Asmussen &

Wohlrab (1972) [67]

Cat 10 40 - 40 Edstrom et al. (1974) [68]

1/16 37 - 32
Mascarello &

Veggetti (1979) [69]

9 45 25 Yokoyama et al. (1995) [70]

Dog 13/21 45 - 37
Mascarello &

Veggetti (1979) [69]

5 40 - 40 Braund et al. (1988) [71]

- - 35 Sanders et al. (1993) [72]

20 45 -
Perlman &

Alipour-Haghighi (1988) [57]

Human 37 43 - 65 Happak et al. (1989) [65]

35 47 40 67 Teig et al. (1978) [64]

muscles of the same species. In contrast, contraction times for the CT muscle

are from two to four times longer, in the range of fast limb muscles of the

same species. Meanwhile, PCA has an intermediate contraction time values,

whereas information for LCA is scarce.

Studies in humans are uncommon for laryngeal muscles, because they can

only be done in cadaveric bodies which are usually not ideal to study dynamical

properties, like contraction times. However, fiber proportion for CT, TA, and

PCA can be measured. Data for humans [64] [65] [66] and other species are

summarized in Table 2.2.

From this Table, it can be seen that small mammals (like rats) are entirely

devoid of slow fibers in the TA muscle, incrementing the proportion as the

size of the animal increases. Also, it can be seen that type I fiber content

correlates with contraction time. For example, in the cat, TA contains 10% of
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slow fibers with a contraction time of 22[ms], whereas CT contains 40%-45%

with a contraction time of 52.8[ms]. This correlation holds true for the rabbit,

in which TA has very few type I fibers (contraction time of 6.5[ms]) while CT

(contraction time 24–30 ms) has 35% type I fibers.

For their experiment, Martensson & Skoguld [3] determined the frequency

range of stimulation at which maximum tension is obtained. Using direct nerve

stimulation on laryngeal muscles in dogs, he established that for CT and TA

maximum tension occurs at 150[Hz] (see Figure 2.5). At higher frequencies, a

decrease in maximum tension can be observed, which can be partly explained

as a reduction in action potential amplitude.

Frequency of stimulation [Hz]
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Figure 2.5: Relation between peak of tetanic tension and frequency of stimulation.

Full circles: cricothyroid (CT); open circles: thyroarytenoid (TA). Peak tetanic

tension (Y-axis) is presented in per cent of maximum tension obtained. Figure from

Martensson & Skoguld (1964) [3]

2.4 Models of muscle activation

Mathematical and numerical models of muscles describe muscle force through

a series of parameters such as muscle length, neuronal activation, shortening

velocity and muscle architecture [73] [74] [75] [76] [77]. Normally, these studies

are based on Hill’s muscle model, which relates tension to the velocity with
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regard to the internal thermodynamics.

(v + b)(T + a) = b(T0 + a) (2.4.1)

Where T is the tension (or load) in the muscle, T0 is the maximum isometric

tension, v is the velocity of contraction and a, and b are constants. This state

equation is typically used in biomechanical studies but does not offer a force

representation of the neurophysiological source.

As it has previously mentioned, the nervous system controls the motor drive

through motoneurons that trigger fibber contraction in muscles. Therefore,

most muscular models that seek to represent muscle force based on neuronal

activity incorporate the concept of a pool of motor units, structuring the

model around some combination of the effect of individual units. The model

developed by Fuglevand et al. is one of the most important in this regard [20].

Fuglevand’s model is comprised of three elements: a motoneuron model, a

motor-unit force model, and a model of the surface EMG. The motoneuron

model considered an excitatory drive function as an input, which represents

the net synaptic input during voluntary muscle contraction. The twitch force

model was estimated as an impulse response to a critically damped system of

second order, with twitch amplitudes being assigned according to rank in the

recruitment order. Finally, the EMG was synthesized as the sum of all motor-

unit action potential trains generated in the motor units. This model also

considers two recruitment conditions, which were tested to establish which one

suits a better EMG-force relationship. Firing rate and MU recruitment were

used as the primary mechanisms of drive control, based on their importance

regulating muscular force [46].

Other models take Fuglevand’s scheme as a starting point, working around

aspects like recruitment and firing rate to configure the most complex and

accurate models [21] [22]. Despite this, it has been stated by some studies

that this is insufficient to describe the considerable variability on twitch forms

in real muscles [78]. Thereby, Song et al [79] propose that by including dif-

ferent type of fibers -slow and fast twitches- this variability can be addressed.

Other models also state that firing rate is difficult to measure empirically, so

they determinate this as a parameter estimated employing genetic algorithms

and optimization processes [80]. Other models include different mechanisms

regarding FF and FR fibers so that fatigue can be included in these muscular

models [81] [82]. By considering the principal mechanisms regarding muscle

force production, models for specific muscles like the gastrocnemius [83] [24],
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dorsal interosseus [84], and bicep brachii [23] have been developed, which have

been validated using data of the force profile, EMG measurements or ultra-

sound images.

Although there have been attempts to model the behavior and mechanics

of intrinsic laryngeal muscles, these studies usually refer to other aspects like

stiffness [85], stress [86] or posture [87]. Modeling laryngeal muscle force (or

activation) is a difficult task because validation usually requires data that is

hard to acquire, and the process is too invasive too have normal conditions

of phonation. Despite this, Titze [4] developed a quantitative model of the

ripple of vocal fold tension, based on neurological properties of the thyroary-

tenoid laryngeal muscle. He considered data from a previous study (Alipour

et al. 1987) in which canine TA was stimulated in vitro at various activation

frequencies. By measuring the force in the muscle, he deduced that average

force increases with activation frequency, although not in a linear fashion. The

results of this are presented in Figure 2.6.

Figure 2.6: Summation of multiple twitches produced by periodic stimulation at

various rates. Tetanus is produced at about 90[Hz]. Data are from the canine TA

muscle stimulated in vitro (after Alipour, Titze, & Durham, 1987). Figure from

Titze 1991 [4]

Based on the electrical and contractile properties of the muscle fibers, and

in combination with the spatio-temporal electrical pattern of the neural popu-

lation innervation, he developed a muscular model that can represent muscular

fluctuations. Titze based his model in a periodic twitch summation of multiple
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motor units. An example of a simulation from his model with one motor unit

can be seen in figure 2.7

Figure 2.7: Summation of multiple twitches produced by periodic excitation at

various rates with the model. Figure from Titze 1991 [4].

To the twitch summation, Titze added random variability to the periods

between spikes, or Inter-Spike Interval. Moreover, he added amplitude vari-

ability to the model be considered a random number of motor units for each

simulation. With this, he created a basic model of activation fluctuations. This

variability is then used to predict perturbations on fundamental frequency (f0)

of the vocal folds oscillation using a linear relationship between muscular force

and f0. Titze deduced from his simulations that perturbations measured in

f0 (coefficient of variance and jitter) are highly dependent on the contractile

dynamic of the thyroarytenoid muscle. His results are presented in Figure 2.8:

Perturbations are calculated as a function of the size (motor unit count)

and firing rate. Predicted perturbations range from 0.2 percent to 1.2 per-

cent, which corresponds to the range of healthy voices [88]. In spite of being

a pioneer study, there are various limitations in [4] that need to be pointed

out, including the disregard of the intricated relationships between the driving

forces, VF configuration, and vibration patterns that led to an overly sim-

plified relationship between force and perturbation in F0, the lack of muscle

recruitment that is known to control muscle contraction [46], and the oversight

of the effect of other laryngeal muscles and the interactions among them.



Figure 2.8: Predicted fundamental frequency F0 perturbations on the basis of (a)

number of motor units, (b) mean motor unit firing rate, (c) coefficient of variation

of motor unit twitch amplitude, and (d) coefficient of variation of the ISI. In all

figures, CV is the coefficient of variation of the F0 contour and JIT is the jitter.

Figure from Titze 1991 [4]



Chapter 3

METHODS

3.1 Physiological and Morphological Aspects of Muscle Ac-

tivation

Activation of the laryngeal muscles comprises two major physiological pro-

cesses responsible for muscle force production, namely, the temporal and the

spatial summations of the muscle contraction [6, 19]. Temporal summation

was modeled at the level of individual motor units, which are composed by

an alpha motor neuron (spinal motor neuron) and the muscle fibers that it

innervates [6, 43]. The spatial summation consists of the successive activa-

tion of additional motor units with increasing strength of voluntary muscle

contraction; –i.e., motor unit recruitment [19] [89].

Fibers forming an individual motor unit respond synchronously to every

action potential (AP) arriving to the neuronal pre-synaptic terminal, produc-

ing a motor unit action potential (MUAP), that is, the algebraic sum of the

APs generated in all the fibers corresponding to a given motor unit. In turn,

MUAPs lead to muscle contraction, the extent of which depends on the firing

rate of the motor unit. A single MUAP leads to a simple twitch (single contrac-

tion), allowing the fibers to return to a relaxed baseline before a subsequent

contraction is elicited.

Addition of motor units to the force production occurs in a precise sequence

concurrently with the temporal summation of twitches. Typically, the first

motor units to fire are those which generate the slowest and the smallest

twitches, producing relatively small and slow contractions (type I motor units).

As a considerable force is required, high threshold MUs generating faster and

larger twitches begin to respond (type IIa and IIb motor units) [17] [18]. Figure

3.1 shows a sketch of the time course of slow and fast twitches, highlighting

the differences in both timescale and amplitude of the responses.

Twitches superimpose as the discharge rate increases, leading to stronger

25
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Figure 3.1: Examples of fast and slow twitch waveforms. Slow and fast twitches are

normalized by the area under the curve, so the contribution in terms of energy is

the same for both fibers [5].

muscle contraction. Linear superposition is referred to as the wave summation

model [6]. Figure 3.2 shows the contractile force as a function of MUAP

firing rate for a single motor unit. At low firing rates, a given twitch almost

completely relaxes before the next twitch occurs, leading to low frequency

undulations and a low net force of contraction. Conversely, at high firing rates

the superposition of twitches leads to a fast rise and larger “steady state”

contractile force magnitude, with small high frequency fluctuations. At a

sufficiently high firing rate, a MU will cease to increase its contractile force

with further increases in firing rate, referred to as tetanus.

0 100 200 300 400 500

Time [ms]

F
o
rc

e
 o

f 
c
o
n
tr

a
c
ti
o
n

Figure 3.2: Wave summation model for different neuron firing rates. Each time a

MU fires, a twitch is generated. The sum of successive twitches is the basis of the

wave summation model [6].

Figure 3.2 is an idealized representation of the wave summation process,

wherein the MUAP interval is a constant (deterministic) value. In actuality,

biological systems exhibit some stochasticity, with the interspike intervals (ISI)
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for MUAPs being no exception. In addition, recruitment of subsequent MUs,

while exhibiting an overarching structure, also demonstrates some randomness

in the process.

3.2 Muscle activation model

Human skeletal muscles typically comprise hundreds of MUs, with both the

MUAP frequency and the number of recruited MUs dictating the total con-

tractile force of the muscle. A single MU contraction (twitch) can be described

using

α̈(t) +
2

τ
α̇(t) +

1

τ 2
= u(t), (3.2.1)

where u(t) represents the MUAP as input, τ stands for the system time

constant, and α(t) represents the resulting contraction force of the fibers. Con-

sequently, the impulse response of the system is represented by

α(t) =
t

τ
e−(t−τ)/τ , t ≥ 0 (3.2.2)

which characterize how an MU responds to an electric impulse (spike) [5].

Equation 3.2.2 is known as alpha synapse function. Herein, type I and II

fibers can be differentiated by their time constants τs (slow) and τf (fast),

respectively. All MUs for a given muscle are assumed to have the same number

of fibers, independent of their type. Equation 3.2.2 should be scaled according

to the magnitude of the response of the different fibers. However, due to

the lack of available data on the laryngeal muscle fibers, a normalization by

the area is performed to approximate the differences in amplitude of the slow

and fast fibers. The normalized version of the alpha function results in the

following equation

ατ (t) =
t

τ 2
e−t/τ , t ≥ 0 (3.2.3)

Figure 3.1 presents a plot of Equation 3.2.3 for both slow and fast twitch

fibers. This waveform will serve as the foundation for the muscle activation

scheme proposed herein to capture both the temporal and spatial summation

processes.

To describe the spatial summation, MU recruitment is modeled via the

Rule of Five (ROF), wherein additional MUs are recruited when currently

activated MUs experience an approximately 5 Hz increase in MUAP firing
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rate [90]. To facilitate modeling of the recruitment of MUs, we assume the

MUs to be functionally bundled into clusters, herein referred to as a Group

of Motor Units (GMU). GMUs can consist of both fast and slow MUs, the

proportions of which will dictate the overall contraction speed of the GMU.

GMUs are assumed to follow the ROF for recruitment.

GMUs are composed as follows: A fixed number of GMUs N is first defined

for a given muscle. Slow-fiber MUs are assigned to the first GMUs, until all

slow MUs are assigned. Fast-fiber MUs are then assigned to the remaining

GMUs. Note that depending on the proportion of slow and fast fibers in a

muscle, there could be a GMU with mixed fibers. GMUs then are recruited

by the ROF from first to last (slow fibers to fast fibers), allowing for the

recruitment of all slow fibers first.

To implement the ROF, we employ a parameter F to control the firing rate

of the GMUs. The firing rate for a given GMU j ∈ {1, . . . , N} is governed by

Fj = min {max {F − 5(j − 1) + η, 0} , Fmax} , (3.2.4)

where Fmax is the maximum firing rate that a GMU can physically sustain,

i.e., the firing rate at which the GMU tetanizes. Note that if a GMU has a

firing rate Fj of zero, it is considered to be inactive, with no force contribution

to the output. The parameter η ∼ N (0, σF ) is a random noise term to

capture the inherent variability in the ROF; that is, subsequent MUs may

not be recruited at exactly a 5 Hz increase in F . Herein, bold font is used to

indicate stochastic parameters and functions.

The stochasticity inherent in the arrival of a MUAP is captured in the tem-

poral summation process by incoporating a random component into the inter-

spike interval (the interval between any two subsequent AP spikes). For a given

GMU j with firing rate Fj sampled from Equation 3.2.4, we construct an im-

pulse train IIIi(t, Fj) with interspike interval drawn fromN (1/Fj,CVe(Fj)/Fj)

for each MU i. The coefficient of variation (i.e., standard deviation divided by

mean), CVe(Fj), derived from the experimental data of Mortiz [16], is given

as

CVe(Fj) =
(
1 + e−Fj/50

)
/10, (3.2.5)

which captures the observed change in behavior across firing rates. This imple-

mentation implies that the CVe ranges from 0.2 for lower activation frequencies

to 0.1 at higher firing rates.
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The pulse train for a single MU is given by the convolution of the alpha

function (equation 3.2.3) with the corresponding impulse train :

pMUi
(t) = (IIIi(t, Fj) ∗ ατ ) (t) (3.2.6)

where τ is determined whenever the fibers in the MU are slow or fast.

Given that for modeling purposes each GMU is composed of slow or/and fast

MU, the contribution of a single GMU is determined by the sum of all the

MU comprising the group. If the GMU is comprised of only one type of MU

(slow or fast), then the resulting activation for that given GMU is ruled by

the following equations:

ps (t, Fj) =
1

Ms

Ms∑
i=1

(IIIi(t, Fj) ∗ ατs) (t) (3.2.7)

pf (t, Fj) =
1

Mf

Mf∑
i=1

(
IIIi(t, Fj) ∗ ατf

)
(t) (3.2.8)

where Ms and Mf are the number of slow and fast MUs in the GMU

respectively. Equation 3.2.7 is used for GMUs that are first activated, with

j = 1, 2, ... ; whereas equation 3.2.8 holds true for the last-recruited GMU, with

j = ..., N−1, N , given the ROF for recruitment. Depending on the proportion

of slow/fast fiber for the muscle, a specific GMU may have a combination of

slow and fast MUs. For this specific GMU, the following equation holds true.

p (t, Fj) =
1

Ms

Ms∑
i=1

(IIIi(t, Fj) ∗ ατs) (t)+
1

Mf

Mf∑
i=1

(
IIIi(t, Fj) ∗ ατf

)
(t) (3.2.9)

Values for Ms and Mf are specific for each GMU, although indexes are

omitted for simplicity.

Finally, muscle activation, which is a normalized representation of the con-

tractile force exerted by a given muscle [15], is given by

am (t) =

∑N
j=1 p (t, Fj)

E{
∑N

j=1 p (t, Ftet)}
(3.2.10)

where E{·} is the expectation operator as t→∞ and

Ftet = Fmax + 5 (N − 1) (3.2.11)
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is the firing rate for a fully tetanized muscle (all GMUs fully activated). In this

manner, a fully tetanized muscle is given by E{am} = 1, whereas E{am} = 0

represents a fully relaxed muscle. We highlight the fact that am is a function

of our firing rate control parameter F introduced in Equation 3.2.4. The

nonlinear mapping between these parameters will be discussed in subsequent

sections.

3.3 Model parameters

Two intrinsic laryngeal muscles are considered in this study due to their im-

portance in pitch control during phonation [54]: thyroarytenoid (TA) and

cricothyroid (CT). Table 3.1 presents the model parameters employed in this

study. This includes experimental data on muscle morphology [65] [64] [3], as

well as modeling assumptions, such as the number of GMUs per muscle and

the number of MUs per GMU.

Table 3.1: Parameters for CT and TA muscles in the proposed model

Muscle TA CT

GMU per muscle (N) 10 10

MU per GMU (M) 35 44

Fibers per MU 10 20

Percentage of slow fibers 35% 47%

Percentage of fast fibers 65% 53%

Slow fibers time constant (τs) 35 ms

Fast fibers time constant (τf ) 15 ms

Maximum firing rate for GMU (Fmax) 150 Hz

Standard deviation for ROF (η) 2 Hz

For this study, the body-cover model developed by Titze and Story [10] was

employed. This low-dimensional model was chosen due to its simplicity and

the physiologically-based relationship established between model parameters

and muscle activation established in [15]. Glottal aerodynamics were modeled

following [91], and no vocal tract was included to facilitate comparisons with

results presented in [15].
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RESULTS

4.1 Muscle Activation Model Description

Figures 4.1a and 4.1b show examples of CT and TA muscle activation signals

obtained using the proposed model for the same set of firing rates shown in

Figure 3.2. At the lowest firing rate, only the first 2 GMUs are nominally

recruited, while for the remaining firing rates all 10 GMUs may be active.

In all cases shown, none of the GMUs are tetanized. The time series shown

in the figure have transient portions that last for approximately 0.2 s, which

represents the time required for the muscle to transition from the fully relaxed

to a contracted state. In comparison with the traditional wave summation

model shown in Figure 3.2, we observe that the muscle activation signal gen-

erated using the stochastic model lacks periodic structure, thus more closely

resembling actual muscle behavior [16].
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Figure 4.1: Example of muscle activation for the CT (left) and TA (right) muscles,

firing at 10, 25, 40, 60, 100 Hz for 1 s. The time series have transient portions that

last for approximately 0.2 s, which represents the transition from a relaxed to a

contracted state.
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Note that Figures 4.1a and 4.1b correspond to one realization of the pro-

posed muscle activation scheme. In order to characterize its general behavior,

we need to run statistics on many realizations of the signal. Therefore, 40 sim-

ulations of the activation signal were computed for each value of the firing rate,

which spans from 10 Hz to 250 Hz, in steps of 10 Hz, i.e., 10000 simulations

are computed. Note that, Fmax is set at 150 Hz, so the tetanization frequency

Ftet is approximately 200 Hz given the ROF. At this frequency, nominally all

10 GMUs should be firing at Fmax, barring stochastic variability in the ROF

in Equation 3.2.4. Simulations are performed up to 250 Hz to account for the

latter.
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Figure 4.2: Mean activation (left axis, solid line) and CV (right axis, dashed line)

versus firing rate, for CT (left figure) and TA (right figure) muscles. In this case,

Fmax is set at 150[Hz], so the tetanization frequency Ftet is approximately 200[Hz],

due to the ROF. The mean muscle activation saturates at a value of 1 during tetanus,

as expected.

The average muscle activation (average of the mean signal values for all

realizations) of the 40 signal realizations for each firing rate F for both the

TA and CT muscles is shown in Figure 4.2 (blue line). We note that in the

range of 40 Hz ≤ F ≤ 180 Hz the relationship between firing rate and mean

activation is linear. Below 40 Hz there are inactive GMUs, while above 180 Hz

the effect of saturated GMUs begins to be noticeable. Typical values of muscle

activation employed in reduced order models range between approximately 0.1

and 0.5, which falls within the linear region of the mapping, which is amenable

to simple control strategies.

The average CV of the 40 signal realizations for each firing rate F for

both the TA and CT muscles is shown in Figure 4.3. The average CV is an
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estimate of the variability within the activation signals across firing rate. The

more considerable variability in low firing rates is a result of Equation 3.2.5,

and the different responses between muscles is a product of the morphological

construction of the muscles, as shown in Table 3.1. Specifically, the differences

between the two muscles are confined to lower firing rates due to the different

proportion of slow-small fibers, which changes the properties of the temporal

filtering in the muscles. We note that CV is substantially uniform for F >

180 Hz as more and more GMUs become tetanized, and thus no longer change

behavior with increasing firing rate.
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Figure 4.3: CV estimation of am(t). For each one of the 40 iterations, CV was

computed for am(t). For each frequency, the mean (left) and standard deviation

(right) is presented considering the 40 measures of CV.

In addition to differences in signal variability between individual realiza-

tions, the mean of the signal can also change. That is, each realization may

have a different steady state mean muscle activation value due to the stochastic

nature of the model. To capture this, Figure 4.2 also presents the coefficient

of variation of the mean (standard deviation of the mean values divided by

the average muscle activation) for the TA (Figure 4.2b) and CT (Figure 4.2a)

muscles at each firing rate (yellow dashed line).

Comparing the CV of the mean in Figure 4.2 with the average CV in Fig-

ure 4.3 shows that the variability of the mean is on the order of the variability

of an individual realization, which has implications for pitch control. To begin

to establish a relationship between the mean activation behavior and pitch con-

trol, we posit that mean activation represents a neurological target. Therefore,

the standard deviation of the mean is associated with the target variability.

The CV of the mean decreases exponentially with the firing rate due mainly
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to the increasing mean; the standard deviation of the means remains rela-

tively constant with firing rate, except at very low firing rates (Figure 4.4).

Neurologically, this translates into a better pitch control at higher activations.

The behavior of the average CV and the CV of the mean support the idea

that variability in discharge rates influences force fluctuations at lower levels

of activation. This is consistent with previous findings [52], which report

that variability at lower levels is due to low-pass filtering of the neuronal

drive. Most of the higher frequency components that are present in the input

signal are damped out, leading to low-frequency oscillations manifesting in

the muscle activation output. It is uncertain if low-frequency variations are

due to ISI variability or low-frequency oscillations in MU discharge [51]; this is

particularly true in the specific case of laryngeal muscles, for which information

is scarce.
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Figure 4.4: Standard deviation of mean activation. The peak produced at 50 [Hz]

is produced when all GMUs become active. This estimation can be understood as

a measure of relative variability.

Figure 4.4 presents the estimation of the standard deviation for the mean

activation at each firing rate. Increasing standard deviation of the mean at

lower frequencies is due to the addition of new active GMUs. With each new

GMU, more fibers are recruited, and variability in the estimation of the mean

also increases. At 50Hz, all GMUs are active, with no new GMUs added for

further firing rates. For higher frequencies, standard deviation remains rela-

tively constant. Differences between muscles can be explained by the different

fiber composition and the total amount of MU (See Table 3.1)
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4.2 Spectral Analysis

To further characterize the properties of the muscle activation model, the spec-

tral content is analyzed as a function of firing rate. The power spectral density

(PSD) is computed as the average periodogram of the 40 signal realizations.

Figure 4.5 presents the resulting PSD for the TA muscle as a function of firing

rate. Color intensity indicates the magnitude of the frequency components.

Two conditions are presented, Figure 4.5a presents the model with random

components in the interspike interval and ROF, whereas Figure 4.5b shows

the results for the deterministic model, without any random variability.

In Figure 4.5a, a strong energy band is present, centered around the firing

rate, which has a slope of 1; this saturates at a firing rate of 150 Hz due to

tetanization, see Table 3.1. The width of the high energy band is approxi-

mately 50 Hz that arises due to the ROF distributing energy between GMUs.

Higher harmonics are present due to the quasi-periodic content in the signals.

0 50 100 150 200

100

200

300

400

F
re

q
u
e
n
c
y
 R

e
s
p
o
n
s
e
 [
H

z
]

-110

-100

-90

-80

-70

-60

-50
Magnitude [dB]

(a) Spectogram for stochastic activation

model.
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(b) Spectogram for deterministic activation

model.

Figure 4.5: PSD of the stochastic (left) and deterministic (right) muscle activation

model versus firing rate for the TA muscle. Color intensity shows the magnitude of

the PSD.

Figure 4.5b presents the PSD for the deterministic muscle activation model,

which occurs when η = 0 in Equation 3.2.4 and CVe = 0 in Equation 3.2.5, is

completely deterministic. Herein, the PSD has a similar structure, but with

the high energy bands resolved into clear tonal components. The contribution

of the different slow and fast GMUs can also be appreciated, having a slight

difference in intensity given the different amplitudes of both twitches.

The other salient feature in Figure 4.5a is a low frequency component in
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the response below approximately 20 Hz. This arises from a cross-spectral

DC component that is inversely proportional to the standard deviation of

the random variable that models the ISI in the activation signal [92]. This is

directly related to the non-zero CV of the mean observed in Figure 4.2; that is,

there is variability in the mean muscle activation that arises as a direct result

of the ISI variability. A mathematical deduction for this result is presented

next.

Considering equation 3.2.10, then the power spectrum Gam(f) for a given

muscle m with muscle activation am is:

Gam(f) =
Gp(f)

E{
∑N

j=1 p (t, Ftet)}
(4.2.1)

Gp(f) =
N∑
j=1

GGMUj
(f) . (4.2.2)

This shows that the resulting power spectrum is given by the combined

effect of the spectra of each GMU, denoted by GGMUj
. These expressions

consider all the active motor units. In the same way, the effect of each GMU

depends on the effect of an individual slow or fast MU. Considering equation

4.2.2, Tetzlaff et al [92] describes the spectrum for a GMU as follows:

GGMUj
(f) =

M∑
i=1

GIIIi,i(f)Ai(f)A∗i (f) +
M∑

i,l,i 6=l

GIIIi,l(f)Ai(f)A∗l (f) , (4.2.3)

where Ai corresponds the power spectrum of the alpha contraction function

for the i MU (see equation 3.2.2) and M is the number of MU for each GMU.

GIIIj,j and GIIIj,l are, respectively, the auto-spectra and cross-spectra of the

spike trains. Equation 4.2.3 describes the resulting spectrum as the summation

of the auto and cross spectra of the spike trains filtered by the transfer function

of the alpha twitches. Taking a slow or a fast twitch affects the bandwidth of

the transfer function, but for this specific case, the difference is minimal given

the values considered. Now, the expression for the auto-spectra can be written

as:

GIIIj,j(f) =
1

Tj

[
1− |Qj(f)|2

]
+

1

T 2
j

|Qj(f)|2
+∞∑
k=0

δ (f − k/Tj) , (4.2.4)
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where Qj(f) is the Fourier transform of the probability density function of

the ISI. The cross-spectra is composed of two elements: a continuous spectrum

and a line spectrum. The continuous spectrum has values on a specific interval

of frequencies (first term), whereas the line spectrum has power concentrated

at discrete frequencies (second term). The line spectrum components have

energy at multiples of the mean firing rate, with an amplitude proportional

to 1/T 2
j , but the continuous component limits the overall bandwidth of the

spectrum. Equation 4.2.4 shows that the bandwidth of the continuous spectra

is inversely proportional to the standard deviation of the random variable

that models the ISI. Therefore, a spike train with low discharge variability has

a greater bandwidth, compared with a spike train with high ISI variability.

This means that the bandwidth of this component is proportional to the ISI

variability. In the specific case in which the spike train has no variability,

being entirely regular, then |Qj(f)| is equal to 1, and therefore the continuous

spectrum is 0. On top of this, equation 4.2.3 shows that the auto-spectra is

low-pass filtered by the transfer function of the twitch contraction.

On the other hand, Tetzlaff et al. [92] shows that the cross-spectra can be

written as follows:

GIIIi,l =
δ(f)

TiTl
. (4.2.5)

Equation 4.2.5 shows that the total contribution of the cross spectra occurs

at DC, and this value increases with the number of spike trains.

In the spectograms 4.5a and 4.5b all the previously mentioned effects can

be appreciated. In the deterministic case (fully regular spike train), there is no

low-frequency components, because the continuous spectrum is zero. There-

fore, only the DC components and the line spectrum (tonal components) are

present. The line spectrum components are presented as harmonics of the fir-

ing rate of each GMU, being composed only of deltas, separated each by 5[Hz].

On the other hand, if there is ISI variability, then the low-frequency compo-

nents are present in the spectogram. Also, the line spectrum components have

a width that depends on the ISI variability. Low-frequency components are

essential for the resulting activation profile (or force output), as they have been

related to force steadiness at low activation values [52]. In the deterministic

case in Figure 4.5b, there is no variability in the ISI; thus the DC component

does not appear, and the mean muscle activation parameter is independent of

realization, as expected.
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4.3 Body-Cover Model Integration

The BCM of the vocal folds (VFs) is typically configured using physiological

rules of muscle activation [15], that allow for a meaningful construction of the

model parameters. We explore the impact of the developed stochastic muscle

activation model by implementing it into the BCM. The BCM model parame-

ters are functions of the thyroarytenoid, cricothyroid, and lateral cricoarytenoid

(LC) muscle activations, and as such, the output of the BCM, which is im-

pacted by these parameters, embeds the complex interactions between the var-

ious muscles. The proposed stochastic variability incorporated into the muscle

activation will thus propagate through the BCM in a non-trivial manner.
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Figure 4.6: Effect of the proposed stochastic TA muscle activation model on the (a)

lower cover mass m1, and (b) lower cover spring k1 of the BCM. Both parameters

vary in time due to the temporal variability in the TA muscle activation parameter.

Figure 4.6 shows an example of how the proposed stochastic model of mus-

cle activation produces variability in the lower cover layer mass and spring

constant in the BCM with time. This specific realization employs a firing
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rate for the TA muscle of 70 Hz with the CT and LC activations assumed

fixed at 0.2 and 0.5, respectively. Temporal variations in the model param-

eters in Figure 4.6 arise due to the stochasticity embedded in the TA mus-

cle activation by the proposed model. The mean (standard deviation) are

6.53 × 10−2 (9.21 × 10−5) g and 8.78 × 104 (67.3) dyn/cm for the mass and

spring constant, respectively.

To more thoroughly evaluate the impact of the proposed stochastic muscle

activation model, we perform a parametric analysis of CT and TA activations.

An evenly spaced grid of 20× 20 firing rates for CT and TA ranging from 0 to

200 Hz was utilized with 40 simulations performed for each parameter combi-

nation. To facilitate comparison with the deterministic muscle activation rules

established by Titze [15], we extend his Muscle Activation Plots (MAPs) to

include variability in BCM output from our stochastic representation. MAPs

allow for an explicit representation of the BCM parameters as functions of

firing rate of each muscle.
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Figure 4.7: Mean fundamental frequency (iso-lines) and average CV (flood contour)

for the BCM as functions of TA and CT muscular activations. All units are in Hz.

Figure 4.7 presents a contour MAP of fundamental frequency as a function

of CT and TA firing rates. The estimation of f0 was obtained using the RAPT

algorithm [93] on the glottal area waveform. The contour lines in Figure 4.8
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display the mean value of f0, while the flood contour indicates the average

CV of the realizations. In this MAP, activations for CT and TA vary from 0

to 1 linearly, which is not valid if we consider a fixed step for the firing rate

input vector. Also, inherent stochasticity in the muscular model that affects

the activation values prevents a correct visualization of the data. This can

be corrected by selecting the firing rate F for CT and TA as X and Y axes.

Although this alters the F0 contour (especially near the edges), the values

for the flood contour can be displayed correctly. In the case of Figure 4.7, a

rearrangement of the data is performed to show the MAP as Titze initially

presented it.
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Figure 4.8: Mean fundamental frequency (iso-lines) and average CV (flood contour)

for the BCM as functions of TA and CT firing rates. All units are in Hz.

Figure 4.8 shows the contour MAP considering the firing rate of the muscles

as parameters. The range of displayed firing rates nominally corresponds to

mean muscle activation parameters ranging from 0 to 1, barring the mapping

presented in Figure 4.2. With this in mind, we note that the distribution of f0
with muscle activation parameters displays similarities to the MAP presented

by Titze [15]. Specifically, f0 generally increases with increasing CT and de-

creasing TA firing rates and vice versa. The CV distribution is somewhat

more complex, with the highest variability occurring when FCT is high and
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FTA is low. A slight increase is also observed when FTA is high and FCT is

low. Interestingly, CV is not elevated when both firing rates are high. Thus,

there is not a direct relationship between the variability in f0 and that of a

particular muscle. This is in contrast with the results from the simpler model

presented in [4] that ascribed all f0 variation to the TA muscle.

To further investigate the trends observed in Figure 4.8, we explore the de-

tails of the important BCM parameters influencing f0, namely the lower cover

spring k1 and mass m1. Sample time series for a specific case was previously

presented in Figure 4.6. Figure 4.9(a) presents the mean spring stiffness and

average CV for the full range of CT and TA firing rates. In general, the mean

value of k1 is a strong function of CT, increasing rapidly as FCT increases.

It is a much weaker function of FTA. The opposite is true for m1, shown in

Figure 4.9(b), which increases with FTA while remaining virtually unchanged

with FCT. The average CV distribution for k1 shows relatively higher values

for the extremes of FCT, whereas the density for m1 is highest at low values of

FTA and relatively invariant otherwise. The combination of these two average

CV distributions largely explains the average CV map for f0 in Figure 4.8.
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Figure 4.9: Mean BCM parameters (iso-lines) and average CV (flood contour) as

functions of TA and CT firing rates. (a) Lower cover spring constant k1 (in dyn/cm);

and (b) lower cover mass m1 (in g) of the BCM.

Figure 4.10 presents the MAPs for the remaining parameters of the BCM.

With this figures, a similar analysis can be performed. The behavior of the

lower mass presented in figure 4.9b is similar to the upper and body masses

in Figures 4.10a and 4.10b, remaining almost unaltered with changes in FCT.

On the other hand, density for m2 is highest for high values of FTA, while
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mb presents the opposite behavior. The remaining coupling constants k2, kc
and kb in Figures 4.10c, 4.10d and 4.10e respectively present all a very non-

homogeneous behaviour, increasing or decreasing their density on different

levels of FCT and FTA.
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Figure 4.10: Mean BCM parameters (iso-lines) and average CV (flood contour) as

functions of TA and CT firing rates. (a) upper cover mass m2 and (b) body mass

mb (in g); (c) upper cover spring constant k2, (d) body spring constant kc and (e)

cover coupling spring constant kb (in dyn/cm).
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Figure 4.11: Mean f0 iso-lines overlaid with mean (a) jitter, and (b) shimmer flood

contours as functions of TA and CT firing rates.

To place the previous discussions regarding CV in a more clinical context,

we now present the described variabilities in terms of jitter and shimmer [32].

While we acknowledge that these measures are not the most clinically rele-

vant, they do enable comparisons with prior studies on the impact of muscle

activation variability [4]. Furthermore, these parameters have been widely re-

ported in healthy human subjects [88], thus providing a measure for indirect

validation of our proposed stochastic muscle activation model. Jitter and shim-
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mer were computed from the simulations previously described using PRAAT

scripts [94].

Figure 4.11 presents jitter and shimmer as functions of CT and TA firing

rates. The mean fundamental frequency iso-lines are included for reference.

For jitter, presented in Figure 4.11(a), there are cases yielding jitter above

1%, which is typical for a normal voice [88]. Therefore, it can be inferred that

although the model introduces neuronal variability, this variability is within

the “normal” range. Similar observations and conclusions can be drawn from

the plot of shimmer in Figure 4.11(b), though these simulations do not include

a vocal tract, which can influence this measure.

Figure 4.11(a) displays another interesting result; considering a specific

f0 contour, 120 Hz for example, it can be seen that different combinations

of firing rates produce the same f0, but exhibit varying levels of jitter. If

the objective is to phonate at a specific target of f0, then it is clear that

depending on the configuration, different values of jitter can be obtained for

the same case. We note that the range of jitter values is in agreement with

those reported in [4], wherein it was found that jitter increased with increasing

TA firing rate. Our results show a similar trend for low values of CT firing

rate, but the opposite trend is observed when the CT firing rate increases.

This further emphasizes the complex interactions that are present in muscle

activation during phonation.
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CONCLUSIONS

5.1 Final Remarks

The present study introduces a neurophysiological muscle activation scheme

for intrinsic laryngeal muscles. It is designed to capture the essential charac-

teristics of force control, providing an activation signal for use in numerical

models of the vocal folds. The resulting activation is controlled by the neural

firing rate of the different motor units, therefore establishing a link between the

nervous system and laryngeal muscle control. Synaptic stochasticity present

in the neuronal input of the motor unit arises from the temporal and spa-

tial summations that govern superposition of muscle twitches and motor unit

recruitment, respectively. As a result, the muscle response has frequency con-

tent centered around both the firing rate and its harmonics, as well as a low-

frequency DC component. These components influence both the fine structure

variability of the signal, as well as the ability to achieve a target mean activa-

tion value for pitch control. These components can have a significant impact

on vocal fold parameters and associated outputs of voice production models.

The proposed scheme is integrated into a body cover model of the vocal

folds to assess the impact of muscle activation variability on overall laryngeal

control. Neural firing rate is introduced as the fundamental control parame-

ter for constructing the body cover model via the muscle activation rules; this

novel control parameter offers a natural, physiologically-based, framework that

governs vocal fold properties. Fluctuations arise in model parameters, such as

vocal fold mass and stiffness, which in turn result in measurable perturbations

in the model output. Variability in these parameters is not a simple function

of one muscle, rather exhibiting complex dependence on multiple laryngeal

muscle behaviors. In spite of this complexity, the fluctuations arising from

inherent stochasticity in neural behavior do not introduce abnormal vocal fold

vibratory patterns. The results of this study are in general agreement with

45
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previous studies relating neural response of a single muscle to fundamental

frequency [4]. However, our results highlight the importance of multi-variate

laryngeal interactions, that yield more complex behaviors than previously re-

ported.

The jitter map previously presented shows that although there is a tendency

to follow this idea, the exact behavior is more complicated. The interactions

with the BCM show that perturbations in f0 depend on which muscle is in-

volved and how these variations occur. The differences in these results may

also be explained by the inclusion of a physiological behavior for muscular

recruitment. On the other hand, we observe that part of neurological jitter is

likely to be a significant portion of the total jitter in normal vocal fold vibra-

tion. The investigation carried out by Titze [4] predicts that perturbations in

f0 decrease with increasing mean firing rate.

5.2 Future Work

The proposed model includes several assumptions regarding muscle morphol-

ogy and functionality, including a linear summation of muscle twitches, the

Rule of Five for motor unit recruitment, and the collection of motor units into

groups that are simultaneously recruited. Although linear twitch summation

is well established in the literature [4,6], a non-linear summation model could

be explored. We further note that other muscle recruitment models exist [20]

and may warrant future examination. In this regard, the proposed morphol-

ogy for the GMUs could be further revised. We acknowledge that the selection

of the number GMU can have an effect on partial frequency components of

the muscle activation signals, although the resulting VF model kinematics re-

main mostly unaffected. It would be of value to further validate the proposed

model with measurements of intrinsic laryngeal muscle activity of human sub-

jects during phonation, though this is quite invasive and requires particular

expertise.

Future efforts will be devoted to exploring the neural effects of antago-

nistic muscles and extending the rules for controlling a triangular body-cover

model [95]. A long-term goal of this work is to replicate the neural vari-

ability of common muscle-related pathologies like Parkinson’s disease. In the

case of Parkinson’s disease, neurons exhibit an intricate pattern of inhibition

and excitation, which leads to altered firing rate patterns [96]. The proposed

model could potentially replicate this behavior and therefore serve as a starting
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point to construct a physiologically-relevant model of Parkinson voices, which

is currently lacking. There are also other applications of the proposed muscle

activation scheme that do not involve a model of vocal folds. For instance, a

3D model of the vocal tract, in which the geometry depends on normalized ac-

tivations [97], or lung muscle activation can benefit from the proposed scheme

to incorporate inherent neural fluctuations in the simulations.
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