
UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM https://repositorio.usm.cl

Tesis USM TESIS de Pregrado de acceso ABIERTO

2018

EVALUATION OF

DISTRIBUTED-SYSTEM

TECHNOLOGIES FOR ALMA

COMMON SOFTWARE

SANHUEZA ULSEN, RENATO FULVIO

http://hdl.handle.net/11673/41542

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA
DEPARTAMENTO DE INFORMÁTICA

VALPARAÍSO ​- CHILE

“EVALUATION OF DISTRIBUTED-SYSTEM
TECHNOLOGIES FOR ALMA COMMON SOFTWARE”

RENATO FULVIO SANHUEZA ULSEN

MEMORIA PARA OPTAR AL TÍTULO DE
INGENIERO CIVIL EN INFORMÁTICA

Profesor Guía: Horst H. von Brand
Profesor Correferente: Mauricio Araya

Julio - 2018

Evaluation of distributed-system technologies for ALMA Common Software

DEDICATION

This thesis is dedicated to my mother, who taught me to strive to the excellence in all
aspects of life. It is also dedicated to my father, who always has my back in the direst

times.

Página 2 de 110

Evaluation of distributed-system technologies for ALMA Common Software

ACKNOWLEDGMENT

The valuable advice given by my thesis advisors, Horst von Brand and Mauricio Araya, has
been a great help in the development and improvement of this document. The hardware
and software provided by the UTFSM Computer Systems Research Group for the
execution of the experiments was greatly appreciated. I would also like to thank the
middleware community, especially the people in the EPICS mailing list and the ZeroC
forums who shared with me their knowledge and experience about middleware.

Last but not least, I would like to thank my parents and my godfather. Without their
unconditional love and support this work could not be possible.

Página 3 de 110

Evaluation of distributed-system technologies for ALMA Common Software

ABSTRACT

Modern observatories develop distributed software systems to support their operations
(e.g., data acquisition, hardware control and system monitoring). The complexity of these
systems makes it difficult and even infeasible to build them from scratch so the software
developers rely on Off-The-Shelf (OTS) software, such as communication middleware, for
the development process. ALMA Common Software (ACS) is an open-source software
framework for the development of distributed control systems that is based on CORBA
middleware. Unfortunately the CORBA compliant middleware is struggling to keep up with
the increasingly demanding requirements of emergent observatories. This dissertation
propose an iterative solution, based on the PECA process created by the Software
Engineering Institute, for the evaluation and selection of communication middleware
alternatives for ACS, so the framework can be used by modern observatories, specifically
Cherenkov Telescope Array (CTA). The process described in this work provides several
advantages to the organizations working with OTS software. It reduces long-term cost and
risk of failure of the system, improves the knowledge about the system and its context,
and allows the evaluation team to tailor the process to fit their needs and budget.
Furthermore it also contributes to upgrade the reuse maturity of the organization and the
tailorability of the process makes it applicable in many contexts such as the evaluation and
selection of other key components of the system. Due to resource constraints this work
only provides a partial execution of the process, that aims to serve as a guide for further
evaluation efforts. Even though no middleware candidate should be selected without a
full implementation of the process, this first iteration describes the approach in detail and
it generated several results that might be reused in future iterations such as a hierarchical
model of the multi-criteria decision-making problem, prioritization of the criteria, filtered
pool of middleware candidates, data collection techniques recommendations, latency
benchmarking and coupling analysis of the most promising candidates.

Keywords​— ALMA Common Software; Cherenkov Telescope Array; Communication
middleware; Off-The-Shelf software selection; PECA

Página 4 de 110

Evaluation of distributed-system technologies for ALMA Common Software

GLOSSARY

ACS: ALMA Common Software.

ACTL: Array Control & Data Acquisition

AHP: Analytic Hierarchy Process

ALMA: Atacama Large Millimeter/submillimeter Array

API: Application programming interface

CAP: COTS Acquisition Process

CBD: Component Based Development

CBSS: Component based software system

CCL: Control Command Language

CCM: Container Component Model

CERN: European Organization for Nuclear Research

CMW: Controls Middleware

COA: Component Oriented Architecture

CORBA: Common Object Request Broker Architecture

COTS: Commercial off-the-shelf

CS: Combined-Selection

CTA: Cherenkov Telescope Array

DA: Domain and architecture compatibility

ESO: European Southern Observatory

FR: Functional requirements

FTE: Full-time equivalent

GCS: General COTS Selection

IDL: Interface definition language

INAF: National Institute for Astrophysics

Página 5 de 110

Evaluation of distributed-system technologies for ALMA Common Software

LHC: Large Hadron Collider

LST: Large-sized telescope

MCDM: Multiple-criteria decision-making

MiHOS: Mismatch-Handling aware COTS Selection

MST: Medium-sized telescope

MTBF: Mean time between failures

NAT: Network address translation

OES: Observation Execution System

OPC UA: Object Linking and Embedding for Process Control Unified Architecture

ORB: Object Request Broker

OTS: Off-the-shelf

PC: Pairwise comparison

QC: Product quality characteristics

RAM: Random Access Memory

RHEL: Red Hat Enterprise Linux

RPC: Remote procedure call

RTA: Real time analysis

RTT: Round-Trip-Time

SC: Strategic concerns

SL: Scientific Linux

SLICE: Specification Language for Ice

SST: Small-sized telescope

TAO: The ACE ORB

TCP/IP: Transmission Control Protocol/Internet Protocol

TCS: Telescope Control System

UI: User interface

Página 6 de 110

Evaluation of distributed-system technologies for ALMA Common Software

TABLE OF CONTENTS

ABSTRACT 4

GLOSSARY 5

TABLE OF CONTENTS 7

TABLE OF FIGURES 10

TABLE OF TABLES 11

INTRODUCTION 13

CHAPTER 1: PROBLEM DEFINITION 15

1.1. Objectives 16

1.1.1 Specific objectives 17

CHAPTER 2: BACKGROUND 18

2.1 ALMA Common Software 18

2.2 Cherenkov Telescope Array 18

2.3 Communication middleware 20

2.4 Component Based Development 21

2.5 Evaluation and selection of COTS 22

2.5.1 Qualities of COTS selection approaches 22

2.5.2 Issues of COTS selection approaches 24

2.5.3 Peca evaluation process 25

2.6 Techniques for evaluating software components 25

2.6.1 Hierarchical Decomposition Method 25

2.6.2 Analytic Hierarchy Process (Pairwise Comparisons and Sensitivity analysis) 27

2.6.3 Quick Assessment (Filtering) 27

Página 7 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 3: SOLUTION 29

3.1 Choosing the approach 29

3.2 Implementing the evaluation process 30

3.2.1 Hierarchical Decomposition 31

3.2.2 Analytic Hierarchy Process 31

3.2.3 Other techniques 32

3.3 Summary of the solution 33

CHAPTER 4: SOLUTION VALIDATION (THE GUIDE) 34

4.1 Planning the evaluation 34

4.1.1 Forming the evaluation team 34

4.1.2 Creating the charter 34

4.1.3 Identifying stakeholders 35

4.1.4 Picking the approach 35

4.1.5 Estimating resources and schedule 37

4.2 Establishing the criteria 38

4.2.1 Analyse the influencing factors 39

4.2.2 Identify and state the reuse goals 40

4.2.3 Identifying and formulate evaluation goals 42

4.2.4 Define high level criteria 43

4.2.5 Can we easily measure the criteria? 43

4.2.6 Establishing priorities 47

4.3 Collecting the data 51

4.3.1 Quick Assessment (Filtering) 51

4.3.2 Literature review about default coupling 56

4.3.3 Latency benchmarking 60

Página 8 de 110

Evaluation of distributed-system technologies for ALMA Common Software

4.4 Analysing the data 66

4.4.1 Picking an AHP approach 66

4.4.2 Consolidating the latency data 66

4.4.3 Consolidating the default coupling data 70

4.4.4 Generating the global scores (weighted aggregation) 77

4.4.5 Analyse the consolidated data 79

4.4.6 Making recommendations 83

CHAPTER 5: SUMMARY OF ADVICES AND RECOMMENDATIONS 86

5.1 Forming a good evaluation team 86

5.2. Choosing the adequate criteria and metrics 86

5.3 Group decision-making and conflict resolution 89

5.4 Choosing techniques for collecting data 90

5.5 Avoiding common mistakes in middleware benchmarking 92

5.6 Guidelines for choosing the best AHP approach to consolidate data 93

CHAPTER 6: CONCLUSIONS 94

REFERENCES 97

APPENDIX A (PECA STEPS) 104

APPENDIX B (PRODUCT DOSSIER TEMPLATE) 106

APPENDIX C (EVALUATION RECORD TEMPLATE) 108

APPENDIX D (SUMMARY OF RESULTS TEMPLATE) 110

Página 9 de 110

Evaluation of distributed-system technologies for ALMA Common Software

TABLE OF FIGURES

Figure 2.1: Relationship between the key concepts in the Hierarchical Decomposition
Method. 26

Figure 4.1: ACS packages. 36

Figure 4.2: Hierarchical representation of the MCDM problem and the local priorities of
each criterion. 46

Figure 4.3: Verbal mode for entering judgements in Super Decisions v3. 50

Figure 4.4: Matrix mode for entering judgements in Super Decisions v3. 50

Figure 4.5: Local priorities of the criteria. 50

Figure 4.6: Setup of the benchmark. 61

Figure 4.7: Simplified main command flow in ACTL. 62

Figure 4.8: Average interactions per second between Java client and Java server. 64

Figure 4.9: Average interactions per second between Python client and Java server. 64

Figure 4.10: Average interactions per second between Python client and C++ server. 65

Figure 4.11: Average interactions per second between Java client and C++ server 65

Figure 4.12: Simplification of the full hierarchical decomposition. 78

Figure 4.13: Sensitivity analysis for the simplified hierarchy. 80

Figure 5.1: Relationship between types of metrics. 88

Página 10 de 110

Evaluation of distributed-system technologies for ALMA Common Software

TABLE OF TABLES

Table 3.1: Qualities of PECA as an OTS software selection approach. 29

Table 3.2: PECA versus the common issues in COTS selection approaches. 30

Table 3.3: Mapping between PECA and the hierarchical decomposition method
terminology. 31

Table 3.4: Summary of the evaluation process and my implementation proposal. 33

Table 4.1: Evaluation team. 34

Table 4.2: Evaluation charter. 35

Table 4.3: Categorized reuse goals. 41

Table 4.4: Performance as evaluation goal with GQM notation. 42

Table 4.5: Manpower efficiency as evaluation goal with GQM notation. 42

Table 4.6: Full decomposition of an evaluation goal. 45

Table 4.7: Saaty Fundamental scale. 47

Table 4.8: Pairwise comparisons regarding the goal using the Saaty scale. 48

Table 4.9: Quick assessment summary. 56

Table 4.10: Definition of default coupling as an evaluation attribute. 57

Table 4.11: Data collected about the ZeroC Ice default coupling. 58

Table 4.12: Latency at runtime between a Java client and a Java server. 67

Table 4.13: Pairwise comparisons regarding latency using a ratio scale directly. 68

Table 4.14: Pairwise comparisons regarding latency using expert knowledge (hypothetical
case). 69

Table 4.15: Latency scores derived from different judgements. 69

Table 4.16: Pairwise comparisons regarding default coupling using the Fundamental
scale. 75

Table 4.17: Default coupling local scores derived from judgement. 77

Página 11 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Table 4.18: Global priorities of the candidates (simplified problem). 78

Table 4.19: Partial ranking of the candidates. 78

Table 4.20: Template of gap analysis matrix for four candidates and two criteria. 81

Table 4.21: Example of a gap analysis matrix with only one criterion. 82

Table 5.1: Availability as an external metric in ISO 9126-1. 88

Table 5.2: MTBF as an external metric in ISO 9126-1. 88

Table 5.3: Mapping between metrics types and data collection techniques. 91

Página 12 de 110

Evaluation of distributed-system technologies for ALMA Common Software

INTRODUCTION

The ALMA Common Software (ACS) is a software framework for the construction of
control systems. It was initially developed by the European Southern Observatory (ESO)
for several years with the objective of unifying the software development of
geographically distributed development teams of the ALMA Observatory. ACS tackles the
challenge of constructing maintainable complex distributed systems. The first ACS
prototype was presented in 2000 showing its core concepts [1].

Fortunately, ACS was intended to be a general framework from the beginning that could
potentially be adopted by other organizations outside the ALMA collaboration. The LGPL
license of ACS is an indicative of that. Over the years some organizations have adopted
ACS for industrial and educational purposes [1].

In the recent years two projects, namely the LLAMA Observatory and the Cherenkov
Telescope Array (CTA), have considered the use of the ACS framework to assist the
development of their control systems. This interest has certainly revitalized the open
source community behind the ACS project (ACS community) which continue to maintain
and improve the framework to this day [1-3].

Despite the continuous efforts invested on improving ACS, this progress will be limited by
some architectural decisions that were taken on the early 2000s that could have been
favorable at that time, but now may be considered outdated (e.g., the use of CORBA
implementations as the communication middleware).

The primary concern of this dissertation is the evaluation and selection of the
communication middleware, which is a core component of many distributed systems. This
selection has several architectural consequences that may limit the ability of ACS to fulfill
the increasingly stringent requirements of modern observatories [4, 5].

Such decision cannot be taken arbitrarily due to the high risk of failure and the complexity
of the problem. The organizations that support the ACS development often have to divide
their resources between organizational-work and ACS development so it is unlikely that
one of them have enough resources to follow a naive approach (e.g., integrating all the
possible alternatives to ACS and then select the best) to solve this problem.

On the other hand, we cannot expect that interested parties will invest irrational amounts
of resources in the evaluation. To solve this problem I propose an evaluation and selection
process which objective is to reduce the risk of the system failing and its long-term cost.
Furthermore the process can be tailored according to the resources available for the
evaluation and the requirements of the organizations.

This dissertation has the following structure. Chapter 1 provides a more detailed
discussion about about the problem we presented above. Even though this document is
targeted for a highly specific audience (e.g., software engineers in the domain of
astroinformatics) Chapter 2 provides a theoretical background with some basics concepts

Página 13 de 110

Evaluation of distributed-system technologies for ALMA Common Software

to understand the rest of this work. Chapter 3 describes the solution proposed (i.e., the
evaluation and selection process) and the rationale supporting its construction. In Chapter
4, I execute the evaluation process, to the extent of my capability, applying it to the CTA
system context with the objective of generating a guide that facilitates the full application
of the process in the future and in doing so, validating the solution proposed. In Chapter 5
I provide some advices and recommendations that may help other evaluators during their
execution of PECA. Finally Chapter 7 concludes the dissertation with some of the lessons
learned during the evaluation process and provides insight about the future work.

Página 14 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 1: PROBLEM DEFINITION

ALMA (Atacama Large Millimeter/submillimeter Array) is a joint project between
american, european and asian scientific organizations. The ALMA observatory combines
66 parabola antennas functioning as a huge radio telescope with a virtual diameter of
approximately 16 km which are located in the middle of the Atacama desert, in Northern
Chile, on the Chajnantor Plateau [6, p. 9].

Remote control of devices and basic components is a main requirement of the people
involved in the ALMA project. Some of these components are related to the antennas such
as the mount, unit control, correlator, thermostat, etc. Nowadays the software used by
ALMA to control devices in a remote way is based on ACS (ALMA Common Software)
framework which allows to standardize the software development between people that
live in different parts of the world and have different development cultures [7].

At the same time, ACS is built on top of a CORBA compliant middleware which implements
a standard for the Object Request Broker (ORB) technology. ACS relies on CORBA
implementations to communicate components in distributed control systems using an
object-oriented versions of remote procedure calls (RPCs) [8].

CORBA has been heavily criticized for having some serious deficiencies. Michi Henning,
who worked as a chief CORBA scientist in IONA Technologies and then as a chief scientist
in ZeroC between the years 2003 and 2010, in his famous article ​The Rise and Fall of
CORBA [9] explains how the procedure followed by the OMG (Object Management Group)
for defining the CORBA open standard was the main cause of its technical flaws which
have been accumulating over time and eroded the interest in the use of this technology,
due to political and economical factors. The main technical flaws mentioned in his article
are the following: unnecessary complexity and inconsistency of the APIs, buggy and
difficult to use C++ mapping and lack of key functionality such as support for security and
versioning. More criticism can be found on the Internet within the reach of a Google
search which includes bloated specifications and implementations, a steep learning curve,
incompatibility issues with firewalls and NAT, high granularity and the need to recompile
Interface Definition Language (IDL) after each change or use the even more complex
dynamic interface. Other similar organizations such as the European Organization for
Nuclear Research (CERN) are also interested in replacing CORBA in their control systems
[10].

In fact, ACS is having problems in complying with the the QoS (quality-of-service)
requirements of ALMA because it is based on CORBA. ALMA partially replaced CORBA with
Distributed Data Service (DDS) technology for improving some ACS services such as the
notification service [11], logging service [12] and bulk data transfer service [13]. Today
there are some modern and mature technologies that might effectively replace CORBA in
ACS entirely.

Página 15 de 110

Evaluation of distributed-system technologies for ALMA Common Software

The goal of this dissertation goes beyond merely critcing CORBA. To the contrary, this
work includes CORBA as a potential candidate to be evaluated with the new alternatives.
We know that a lot of the problems that were criticized in the past were already solved by
several CORBA implementations. If we can rescue something from these criticisms is that
maybe the problems were solved too late because the base of CORBA developers is
shrinking to inconvenient levels. Finding CORBA developers in the future may be
impossible or very expensive as CORBA is mostly considered a niche technology.

We also should consider that CORBA was conceived about 27 years ago as an answer to an
interoperability problem in very heterogeneous distributed systems in terms of hardware
(e.g., embedded systems), software (i.e., different operating systems) and programming
languages. We can argue that this great interoperability support is a big contributor to the
complexity of CORBA. However, not all modern observatories are in need of such
interoperability. For example the Cherenkov Telescope Array (CTA), which is the test
subject for this document, forced an homogeneous system at least in terms of hardware
and software for running the Array Control and Data Acquisition (ACTL) software which is
based on ACS, with OPC UA ensuring interoperability with the devices. This means that
they have to pay the full price of CORBA interoperability (e.g., lower performance [14]),
but they are not going to profit from it. Moreover, maybe they can’t even pay the price at
all because the manpower for developing and maintaining ACTL is very limited [15] and
the high complexity of the CORBA APIs plus reduced availability of CORBA developers
might be a showstopper for the ACTL development team. So it is not surprise that CTA
adopted ACS with suspicion due to its communication middleware. It becomes necessary
to study the different alternatives that didn’t exist when CORBA was chosen as the base
middleware for the construction of ACS.

With the explosive growth of open source software, developers often have to make a
decision between building software from scratch or reusing software off-the-shelf (OTS).
Moreover, the great availability of high quality open source projects makes it difficult to
choose the software that best fits their needs and often a naive approach is used for the
selection. The middleware software is not an exception. Even though we can use a naive
selection method for trivial software selection [16], it is not an appropriate approach for
communication middleware selection in ACS due to the high cost of replacing such a core
component and the high risk of not meeting the requirement specifications. When
software developers or architects choose a specific communication middleware, several
design and architecture decisions about the whole distributed system are being taken
under the hood that have very important short and long-term consequences, including the
success or failure of the project.

1.1. Objectives

The objective of this dissertation is to create a guide that serves as support for the
evaluation and selection of communication middleware, with the goal of replacing the
CORBA middleware in ACS with a modern technology aligned with the current and
emerging requirements of modern observatories such as CTA.

Página 16 de 110

Evaluation of distributed-system technologies for ALMA Common Software

1.1.1 Specific objectives

● To analyze the relevant evaluation criteria for the modern observatories.
● To analyze the available technologies for replacing CORBA in ACS.
● To show a partial execution of a reusable approach for the evaluation and

selection of communication middleware.

Página 17 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 2: BACKGROUND

2.1 ALMA Common Software

ALMA Common Software (ACS) is a software framework for the development of
distributed control systems. It was initially created to provide a common platform for
unifying the software development of all partners in the ALMA collaboration [7, p. 1]. It
supports the development of maintainable systems while trying to hide the complexity of
the underlying tools that compose it (e.g., CORBA middleware) with the implementation
of a Container Component Model (CCM) [7].

ACS provides some communication protocol implementations, based on CORBA
middleware, which enable the interaction between remote components (developed in
C++, Java and Python). These components are often used to control hardware devices. It
also provides several common and centralized services which are frequently needed in
distributed control systems such as logging, alarms, error handling, configuration
database, archive and object location [7, p. 3].

Even though ACS was designed for its use in ALMA (an astronomical interferometer of
radio telescopes on northern Chile), it was released under a LGPL license which has
motivated several organizations around the world to use it in industrial and educational
applications [1]. For example the Italian National Institute of Astrophysics (INAF) uses ACS
for the development of their own control system named DISCOS which is used in three
radio telescope facilities [17].

ALMA is not currently developing new features for ACS because the project is in
production phase [5]. An ACS open source community, composed primarily by some
organizations interested in ACS, ALMA engineers (volunteers) and university students, is
now in charge of maintaining and extending the ACS framework with new features for
projects that choose to incorporate ACS in their software development without the
restrictions of the ALMA project [1]. In the recent years some organizations such as the
LLAMA Observatory and the Cherenkov Telescope Array have decided to incorporate the
use of ACS in their control systems. This renewed interest and the new resources have
strengthened the ACS community, but at the same time it has set up the challenge to
make ACS a framework able to support the demanding requirements of modern
observatories.

2.2 Cherenkov Telescope Array

An international partnership of scientists from 32 countries is developing the Cherenkov
Telescope Array (CTA). This next-generation gamma ray observatory will address complex
scientific topics such as “the origin and role of relativistic cosmic particles, probing
extreme environments (i.e., neutron stars, black holes and cosmic voids) and exploring
frontiers in physics (i.e., dark matter, photon propagation and axion-like particles)” [18, p.

Página 18 de 110

Evaluation of distributed-system technologies for ALMA Common Software

3]. CTA will deploy telescopes in two sites, one on each hemisphere, allowing a full sky
coverage and improved sensitivity compared to existing observatories [18].

CTA will be composed by at least three types of telescopes that allow the scientists to
capture data about gamma rays with different levels of energy levels. The low energy
gamma rays are captured by the large-sized telescopes (LTSs). The gamma rays in the core
energy range are captured by the medium-sized telescopes (MTSs). Finally the high energy
gamma rays are captured by the small-sized telescopes (STSs) [18].

The southern array will be located in the European Southern Observatory Paranal site in
Chile and will include 99 telescopes (4 LTSs, 25 MTSs and 70 LTSs). The northern array will
be located at the Instituto de Astrofisica de Canarias (IAC) Roque de los Muchachos
Observatory in La Palma, Spain and will be equipped with 19 telescopes (4 LTSs and 15
MTSs) [18].

The CTA software engineers have to develop low-level software to access the telescope
assemblies and auxiliary devices. Then this low-level software has to be integrated with a
high-level array control system, leading to a highly complex distributed system.

This high-level system, known as the Array Control and Data Acquisition (ACTL) software
system is responsible for orchestrating and executing the observations of CTA. To
accomplish this the ACTL system has to provide several functionalities such as “monitor
and control all telescopes and auxiliary devices in the CTA arrays, schedule and perform
observations and calibration procedures, and to time-stamp, read-out, filter and store
data” with some strict non-functional requirements [19, pp. 2-4]. The ACTL software
development is based on the ACS framework.

The low level software is developed by the telescope and device teams. It is based on the
Object Linking and Embedding for Process Control Unified Architecture (OPC UA)
technology used to standardize the hardware access. The ​bridge ​design pattern is used to
integrate the low-level software with the ACTL software [15].

End-to-end prototypes for some telescopes subtypes are ready. The SST-1M prototype
provides an ACS component for each subsystem of the telescope. ACTL will be able to
control the SST-1M telescope by issuing commands to the telescope's ACS master
component which can connect to and control each subsystem's components. Finally these
components access the hardware through OPC UA to execute the commands [20]. In an
analogous way the ASTRI SST-2M prototype provide the Mini-Array Software System
(MASS) to control telescopes. The ASTRI team built MASS in a modular way that allows an
easy integration of the ASTRI SST-2M telescopes with ACTL high level software by simply
defining an interface to the the Telescope Control System (TCS) component [21].

In 2017 CTA internally changed the name of the ACTL system to Observation Execution
System (OES). The majority of the documentation that was analysed during the
development of this dissertation uses the former, so ​ACTL ​is utilized in this document.
Nevertheless, they may be considered interchangeable in this dissertation.

Página 19 de 110

Evaluation of distributed-system technologies for ALMA Common Software

2.3 Communication middleware

As described in [22] distributing a software application almost always adds complexity,
concurrency issues and performance degradation, so it should be done only after a careful
evaluation. Usually we build a distributed system when we are addressing an inherently
distributed problem (e.g., aircraft flight control) and/or we need to boost certain
properties (e.g., fault tolerance and scalability). For both of these reasons, as we briefly
explained in Section 2.2, the ACTL team can not develop the CTA software system
following a monolithic approach.

The software components that interact in a distributed system are not being necessarily
executed in the same process or even the same hardware so they need a mean to
communicate. This can be done by using the network layer protocols like using TCP/IP
sockets directly. The problem is that working in such low level has several disadvantages
(e.g., it is error prone, difficult to scale and hard to maintain) [22, 23].

To overcome these disadvantages, we might use an extra layer of software between the
application and the network services provided by the operating system kernel [22, 23].
This layer, known as ​communication middleware​, allows the developers to work at a
higher level of abstraction. This technology may bring several advantages (and
disadvantages) to the system, depending on the protocols and services it provides and the
quality of their implementation.

A communication middleware often implements one or more basic communication styles
such as remote procedure call (RPC), message-oriented communication, shared memory
and/or streaming-oriented communication [22, 24]. Other more complex communication
styles and paradigms are built on top of these basic styles. There are several ways to
classify communication middleware. Alrahmawy [25, Ch. 2] presents a taxonomy of
middleware paradigms:

1. The Message Passing Paradigm
2. The Client Server Paradigm
3. The Peer-to-Peer Paradigm
4. The Message System Paradigm

a. The Point-To-Point Message Model
b. The Publish/Subscribe Message Model

5. The Remote Procedure Call
6. The Distributed Object Paradigm

a. Remote Method Invocation
b. The Network Service Paradigm
c. The Object Request Broker Paradigm (ORB)

7. Component Oriented Architecture (COA) Paradigm
8. The Application Server Paradigm
9. The Tuple Space Paradigm
10. The Collaborative Application (Groupware) Paradigm

Página 20 de 110

Evaluation of distributed-system technologies for ALMA Common Software

After careful consideration, I decided to use this classification due its completeness (e.g., it
includes 10 paradigms). Furthermore it is ordered by level of abstraction (starting from
the lowest level) which is an important attribute to consider in the evaluation of
communication middleware.

There is no clear distinction between the work that should be done at the application
layer and the middleware layer. Generally, low level middleware just provides one or
more communication protocol implementations while high level middleware also provides
common, reusable and domain-independent services and well tested patterns that allow
the developers to focus more on the business logic of the application.

ACS was built on top of CORBA standard compliant communication middleware: The ACE
ORB (TAO) [26], JacORB [27] and OmniORB [28]. These ORBs provide the core
communication capabilities for the ACS components which are used to build distributed
control systems. Also, each of these implementations of CORBA standard provide its own
set of common services. ACS services are based on some of these CORBA compliant
services. Even though the vanilla CORBA middleware can be classified under the Object
Request Broker Paradigm (see Section 2.3), ACS uses CORBA to implement a custom
Component Container Model (CCM) [7] which allows the ACS users to work at an even
higher level of abstraction (Component Oriented Architecture Paradigm).

2.4 Component Based Development

The increasing availability of reusable software promoted the arising of a new software
development paradigm, in which the focus has changed from programing complex
software systems from scratch into composing software systems like a puzzle. This idea
has incarnated in the already well-known Component Based Development (CBD) process
in which the systems are composed by in-house and third-party reusable software [29].

We can see how this vision of software development is present in ACS and ACTL. On one
hand the ACS framework reuses third-party software such as the communication
middleware (more details in Section 4.1.4). On the other hand the ACTL reuses software
frameworks (e.g., ACS and OPC UA). This is not a surprise since the total estimated cost of
the ACTL project is around 18 million euros from which the labour and
software-development cost is the dominating factor (13 million euros equivalent to 165
FTE) [15]. CBD, if executed properly, reduces de development cost (i.e., time and money)
and it might even boost the overall quality of the system. Nonetheless CBD puts new
challenges on the table: The selection of software components and their integration in a
software system that has to comply with its requirement specification and the system
context constraints.

One of the major risks of CBD is choosing the right components. Extensive work has been
done regarding the evaluation and selection of commercial Off-The-Shelf (COTS)
component. Comella-Dorda et al. [16, Sec. 1.1] describe the characteristics of COTS
products:

Página 21 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● Sold, leased or licenced to the general public
● Offered by a vendor trying to profit from it
● Supported and evolved by the vendor, who retains the intellectual

property rights
● Available in multiple, identical copies
● Used without modifications of the internals

2.5 Evaluation and selection of COTS

Garg [30] made an extensive list of the COTS evaluation processes designed until January
2017. In his work he pointed out the general advantages and disadvantages of using each
method. He concludes that no process is inherently better than the others.

Bali and Madan [31] presented a literature review of the empirical studies carried out in
the past for evaluation and selection of components during the design phase of
Component Based Software Systems (CBSS). Feras Tarawneh et al. [32] presented a state
of the art about evaluation and selection of COTS, exposing the common strategies and
the issues that the methods should address. Additional common limitations of the
evaluation processes are described in [33].

A specially through analysis was performed by Mohamed, Ruhe and Eberlein [34] which
includes a comparison of the eighteen more relevant selection process to that date
(March 2007), stating their contributions to COTS evaluation in historical order and finally
stating the pros and cons of each method.

From these studies I compiled a list of relevant criteria that we should consider when
choosing a process for the evaluation and selection of communication middleware for
ACS. These criteria are described below.

2.5.1 Qualities of COTS selection approaches

This section describes six features from the evaluation and selection process that are
desirable.

Conformance to the GCS Method

The General COTS Selection Method (GCS) represents a series of steps that are commonly
followed by the majority of the COTS Selection processes even though there is not an
universally accepted method. The steps of the GCS Method are the following [34, Sec.
2.1]:

● Step 1: Define the evaluation criteria based on stakeholders requirements
and constraints.

● Step 2: Search for COTS Products.
● Step 3: Filter the search results based on a set of ‘must have’

requirements. This results in defining a short list of most promising COTS
candidates which are to be evaluated in more detail.

● Step 4: Evaluate COTS candidates on the short list.

Página 22 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● Step 5: Analyze the evaluation data (i.e., the output of Step 4) and select
the COTS product that has the best fitness with the criteria. Usually,
decision making techniques, e.g.analytic hierarchy process (AHP), are used
for making the selection.

Tailorability

As described in [34, Sec 3.1] tailorability refers to “the flexibility of the evaluation process
(including the evaluation criteria themselves) to be adapted based on the available effort
for the project.” This is a rare quality of the COTS selection approaches.

Compatibility with common evaluation strategies

Even though the evaluation processes might differ in the details of their implementation,
they commonly rely on some of the three general strategies to implement the evaluating
step. These strategies are the following [34, p. 2]:

● Progressive Filtering: It attempts to reduce the number of potential candidates by
executing several iterations of the evaluation process. In each iteration the
evaluators use discriminating criteria to reject unsuitable alternatives.

● Puzzle assembly: Sometimes the fitness of COTS software depends on its
interaction with other products. In these cases the requirements of both the COTS
software and the interacting products should be considered simultaneously.

● Keystone identification: The evaluators identify a key requirement and then they
evaluate if the candidates can fulfill them, effectively filtering a lot of unsuitable
candidates in the process.

Suitability for single and multiple COTS selection

The vast majority of approaches for COTS selection were designed for single COTS
selection, that is, they are used for selecting one product at a time. There are a few
processes that allow to evaluate and select a combination of products in a parallel fashion.
Nonetheless, the approaches for multiple COTS selection are more expensive in the short
term.

Mismatches handling support

When we develop Component Based Software System (CBSS) two types of mismatches
might occur when selecting a COTS software. Tarawneh et al. [32, Sec 2.1.1] describe the
architectural mismatches as the discrepancies between the COTS and the rest of the
system due to interoperability issues and incompatibilities such as “using different
database schema, different programming languages, or communication protocols” [32,
Sec. 2.1.2]. They also describe the COTS software mismatches as the differences between
COTS software capabilities and user requirements or expectations. After identifying the
mismatches, the evaluation team should also be able to provide a way to fix them, the
resources needed and the risk associated to the proposed solutions.

Página 23 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Availability of tools

The final criterion presented in [34] is the availability of tools to facilitate the application
of the selection process. Some approaches are supported by software tools which are
primarily prototypes developed by the authors.

2.5.2 Issues of COTS selection approaches

There are common issues in COTS selection that are not addressed by the previous criteria
and are considered undesirable. Some of these issues are mentioned in [32] and other
ones are mentioned in [33]. This section describes six of these issues.

Having a single evaluation criteria

Approaches based in only one criterion could reach a deep level of analysis about a
specific aspect of the software, but the evaluators would be (probably) ignoring several
critical factors [33].

Non-functional requirement problem

Nowadays the importance of non-functional requirements (NFRs) in software
development is well understood. The NFRs describe how the software system will do its
work and thus they often have a great impact on the system architecture. Some selection
methods don’t deal with these requirements or have poor handling of them [33, 32].

Lack of learning from previous COTS software selections

Software components chosen in the past, successful criteria and techniques used in
previous evaluations and data collected about vendors and open source communities may
be very useful during COTS software selection processes [32]. For these reason many
selection methods promote the documentation of the COTS software evaluation, but they
“don’t show mechanism to store and manage the information” [32, Sec. 2.3].

Assuming user requirement exist

“Without well understood and properly obtained user requirements it is not possible for
the evaluators to produce quality results” [33, Sec. 3]. Many approaches assume that
these requirements were already elicited and don’t support this task [34].

Higher complexity/effort level

Cost is a sensitive topic in COTS evaluation because an important goal of applying a COTS
selection method is to reduce long-term cost of choosing an inappropriate product,
without paying too big a short-term cost. As pointed out in [33] evaluators are not inclined
to follow effort-intensive and time-consuming selection approaches.

Not describing in detail, What to do?

One important criticism to selection processes is the lack of detailed specification of what
to do and how to do it. This is arguably one of the main reasons that motivates evaluators
to follow an ad-hoc approach [33].

Página 24 de 110

Evaluation of distributed-system technologies for ALMA Common Software

2.5.3 Peca evaluation process

Software Engineering Institute (SEI) and National Research Council Canada (NRC) created
the PECA evaluation process as an alternative to evaluate COTS (Commercial off the shelf)
software in a comprehensive, continuous and defined process that consider context,
uncertainty and is based on facts [16].

“PECA is named by the four activities that make up the process: Planning the evaluation,
establishing the criteria, collecting the data and analyzing the data” [16, p. 11]. This
evaluation process is highly tailorable and allows to perform a formal evaluation of open
source technologies with virtually no modifications.

The input of the process are the list of possible candidates and the system requirements.
Sometimes the stakeholder expectations are not fully considered in the system
requirements, but they could potentially (and probably) influence the evaluation. Another
input is the evaluation guide which contain the ​know how of the organization about
processes and techniques for performing evaluations [16].

The output of the process is an improved evaluation guide, a product dossier (repository
of software documentation), an evaluation record that contains a description of the
evaluation process and a summary/recommendation that includes the results. It is also
worth noting that PECA has favorable side effects. Even if the evaluation fails and no
suitable candidate can be chosen, this process improves the insight of the evaluators
about the system. Engineers might use this knowledge to refine the system requirements
and also architects and integrators get feedback [16, pp. 13-14].

While PECA steps are a high-level description of what evaluators have to do, evaluation
techniques used in each step are low level descriptions of how it should be done.
Appendix A includes a brief summary of the process as described by Comella-Dorda et al.
in [16].

2.6 Techniques for evaluating software components

2.6.1 Hierarchical Decomposition Method

Similar to the well-known Goal-Question-Metric approach, the Hierarchical
Decomposition Method is a technique used in multiple-criteria decision-making (MCDM)
problem solving. This dissertation focuses on the implementation proposed by Kontio,
Caldiera and Basili [35] which is tailored for supporting OTS software evaluation. This
hierarchical decomposition method breaks down a problem into evaluation goals,
evaluation criteria and finally in measurable evaluation attributes. The result is a tree
representation of the problem.

This method enables the evaluation team to start working from a high level description of
what is important (factors) to meaningful and measurable criteria (evaluation attributes)
as illustrated in Figure 2.1.

Página 25 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 2.1: Relationship between the key concepts in the Hierarchical Decomposition Method.

Source: Elaborated by the author.

The steps of the hierarchical decomposition method presented in [35] are summarized as
follows:

● Analyse the influencing factors: these factors come from five sources: the
application requirements, the application domain and architecture, the project
objectives and constraints, the availability of features and the organization
infrastructure.

● Identify and state the reuse goals: from the analysis of the influencing factors we
can derive the reuse goals of the system. These goals represent what is expected
from the reuse of the off-the-shelf software (e.g., the communication
middleware). These expectation might be about the product characteristics or
about the impact of the software in the development and maintenance process. A
reuse goal statement should be documented although it will probably be abstract
and simple at this point.

● Identify and formulate evaluation goals: the evaluators can easily determine the
goals of the evaluation from the reuse goals. These goals are documented using
the Goal-Question-Metric notation.

● Define high level criteria: for each evaluation goal, the evaluation team has to
“define a set of high level criteria or questions that characterize it” [35, p. 6]. Each
criterion can be classified as a functional requirement, a product quality

Página 26 de 110

Evaluation of distributed-system technologies for ALMA Common Software

characteristic, a strategic concern or a constraint for achieving domain and
architecture compatibility. For each criterion, the evaluation team has to “write
down an unambiguous definition of it” [35, p. 6].

● Identify the evaluation attributes: the evaluation team has to mark a criterion as
an evaluation attribute if “the value for the criterion can be determined with an
objective measurement, observation or judgment” [35, p. 6]. If it is not the case,
then the evaluators have to continue decomposing it. These evaluation attributes
are the leaf nodes in the hierarchical representation of the MCDM problem.

2.6.2 Analytic Hierarchy Process (Pairwise Comparisons and Sensitivity analysis)

The Analytic Hierarchy Process (AHP) is a framework of logic and problem-solving [36]
developed by Thomas Saaty for MCDM which is widely used across several different
domains. Saaty argues that AHP “is based on the innate human ability to use information
and experience to estimate relative magnitudes through paired comparisons” [36, Sec.
1.1].

Brunelli [37, Fig. 1.1] positions AHP in the intersection of decision analysis and hard
operations research. He also explains that AHP really excels in MCDM problems where we
have to deal with tangible criteria (i.e., objectively and unambiguously measurable) in pair
with intangible criteria which have not a standard scale and thus they are hard to measure
(e.g., vendor reputation, open-source project quality and extensibility support). AHP
address this issue using pairwise comparisons which results are compatible with the
theory of relative measurement [37, p. 6].

Saaty [38, p. 3] summarized the decision making process in the following steps:

● Structure the problem with a model that shows the problem’s key
elements and their relationship (e.g., hierarchy).

● Elicit judgements that reflect knowledge, feelings and emotions.
● Represent those judgments with meaningful numbers.
● Use these numbers to calculate the priorities of elements of the

hierarchy.
● Synthesize these results to determine an overall outcome.
● Analyze the sensitivity to changes in judgements.

We are only interested in the techniques of AHP that we might import to PECA such as the
pairwise comparisons (PCs) and weighted aggregation. They allow us to prioritize the
evaluation criteria and consolidate heterogeneous data collected during the evaluation
process. The sensitivity analysis is also an useful technique for analyzing the consolidated
data in PECA.

2.6.3 Quick Assessment (Filtering)

PECA suggest the use of filters as an effective way to narrow a big list of candidates by
discarding those who are clearly unsuitable due to not meeting certain easily measurable
criteria. This is very useful because measuring and collecting data can be an expensive

Página 27 de 110

Evaluation of distributed-system technologies for ALMA Common Software

process and filtering helps to make the process more cost-efficient by enabling the
evaluators to focus only in the most promising candidates.

Filtering is an intuitive task in which the evaluators select some easily measurable criteria
as showstoppers to filter the whole pool of candidates available. Nevertheless
Wasserman, Pal and Chan [39, pp. 11-12] propose some useful guidelines and good
practices for the initial filtering and quick assessment of open source software. They
describe five steps:

● Decide the target usage of the application: they identify four general types of
usage (mission-critical, regular, development and experimentation).

● Select a handful of viability indicators based on target usage: these are quick and
easy to use indicators that strongly show the viability of the candidates. In [39] a
list of common indicators for filtering open source software is provided.

● Add more internal viability indicators to the list if applicable: the candidates may
need to meet some crucial requirements coming from the target software system
or its context. The evaluation team should include these indicators if they are
relevant and easy to measure.

● Create a policy of passing criteria: the evaluators have to define a policy to identify
what assessment outcomes are appropriate. Easily measurable indicators often
provision a positive or negative outcome. Sometimes evaluators might introduce
an intermediate category. For example, an acceptable policy might be ​no more
than two negatives​.

● Assess each software component against the list of viability indicators: the
evaluation team can start the quick assessment after they defined the viability
indicators and the passing policy. The result will be a reduced list of candidates
which are evaluated in more detail in the next steps of PECA.

Página 28 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 3: SOLUTION

3.1 Choosing the approach

As stated in Section 2.5 there are several approaches to evaluate and select COTS
software in a methodical way. Furthermore there is not a silver bullet in the field of COTS
evaluation and selection. How we choose the best approach to our context? In this section
the rationale behind the choice of PECA for this work and the CTA middleware selection is
summarized: Table 3.1 describes how PECA stands against the criteria presented in
Section 2.5.1 and Table 3.2 state how PECA overcomes the common issues in COTS
selection introduced in Section 2.5.2.

Table 3.1: Qualities of PECA as an OTS software selection approach.
Source: Elaborated by the author

Quality Description

Conformance
to the GCS
Method

PECA contains all the steps of the GCS Method. Additionally, it proposes a planning step
at the beginning of the process.

Tailorability Tailorability is one of the most relevant factors to choose PECA for this evaluation. Only
two approaches for COTS selection are considered tailorable and according to [34],
PECA is the most detailed and it provides some guidelines for experts to tailor the
process. Moreover the tailorability of PECA makes it useful in many contexts. As
mentioned in [16] PECA is equally applicable to COTS-like software (i.e., that doesn’t
comply all the conditions stated in Section 2.4 for COTS products) including open source
software which is the focus of our evaluation.

Compatibility
with common
evaluation
strategies

Typically the COTS selection methods imply the use of one or two of the common
strategies. PECA is flexible enough to allow the use of any combination of these
strategies so the evaluators are able to choose the best approach to fulfill their goals
under their current constraints.

Suitability for
single and
multiple COTS
selection

PECA doesn’t support multiple COTS selection, but I consider that this issue is not
relevant in our context. We are interested in evaluating the communication middleware
that should be used in the ACS framework. A combination of technologies that covers all
the requirements of the middleware might be technically optimal, but it will significantly
increase the development, integration and maintenance of a more complex system.
Furthermore, the execution of multiple COTS selection approaches require the
allocation of a massive amount of resources [40] which is not desirable, even for CTA.

Mismatches
handling
support

Full support for mismatches handling is very rare and expensive in the short term [34].
PECA is one of the few approaches that provide a partial support in a cost-effective way,
but it relies on expert knowledge to do it [16]. This should not be a problem for CTA, but
it might be a showstopper for other organizations with less available resources.

Availability of
tools

As a tailorable process, PECA might use tools designed to support the techniques
selected for implementing the process. For example PECA can use PCs, so a tool such as
Super Decisions v3 might be used to support this technique as is shown in Chapter 4.

Página 29 de 110

Evaluation of distributed-system technologies for ALMA Common Software

 Table 3.2: PECA versus the common issues in COTS selection approaches.
Source: Elaborated by the author

Issue Description

Having a single
evaluation
criteria

PECA promotes the inclusion of multiple criteria addressing different aspects of the OTS
software product and the target system.

Non-functional
requirement
problem

PECA offers good coverage for these requirements. In the Establishing the criteria step,
the method instructs to consider all the relevant sources of NFRs for defining the
evaluation requirements such as architecture/interface constraints, programmatic
constraints, operational environment and stakeholder expectations.

Lack of
learning from
previous COTS
software
selections

PECA provides guidelines and templates to help the evaluators to create a knowledge
repository. This repository is intended to serve as an input (and output) in each
iteration of the process to improve the reuse maturity of the organization.

Assuming user
requirement
exist

Although system requirements are an important input for PECA, the process is not
always executed sequentially. “Evaluation events, such as a need for new criteria to
distinguish products or unexpected discoveries while collecting data can lead to the
start of a new iteration” [16, Fig. 4] so we can still work with a partial definition of the
requirements, but it is not recommended.

Higher
complexity/
effort level

PECA was designed with cost-efficiency in mind. Moreover, its tailorability allows it to
adapt to different organizations, COTS-based development processes and availability
of resources [16].

Not describing
in detail, What
to do?

Even though PECA is characterized as a “detailed tailorable COTS selection process,” it
relies on “human experience” to tailor the process [34, Table 12] and it doesn’t detail
how to execute the different techniques required during the process. With this
dissertation I attempt to overcome this issue by providing a concrete execution of the
approach for middleware selection.

3.2 Implementing the evaluation process

PECA provides high level guidelines about what evaluators should do, but also provides
enough flexibility to let them choose how to do it. Each step of PECA suggest a series of
tasks that has to be completed (See Appendix A). Some of these tasks are straightforward
so they don’t require additional low level guidelines. Nevertheless there are some more
complex tasks that require a more detailed explanation on how to do them so evaluators
can execute the process effectively and painless. After selecting PECA as the evaluation
and selection process, the evaluators should tailor it to the current system context and
one of the ways to do it is to select appropriate techniques that define the low level
implementation of the process. For this dissertation I purposely chose techniques with low
cost for the evaluators so they can be executed by me and also they can be attractive for
other evaluators which often reject the use of expensive techniques in the context of
software selection [33].

Página 30 de 110

Evaluation of distributed-system technologies for ALMA Common Software

3.2.1 Hierarchical Decomposition

Contrary to what some overconfident reader might think, defining evaluation criteria is far
from being a trivial task. Hierarchical Decomposition and the Goal-Question-Metric
approach are two alternatives recommended by PECA for accomplishing that.
Nevertheless these are generic techniques which can be used in a wide variety of
dominions. There is a lack of explicit documentation about the application of these
techniques for software product evaluation and adapting them to this domain may be
time consuming and error prone.

Fortunately in [35] a hierarchical decomposition method is presented which claims to be
effective, having low overhead and most importantly being publicly and detailed
explained in the context of software product evaluation (Off-The-Shelf software
evaluation).

As described in Section 2.6.1 the hierarchical decomposition method allow us to generate
a tree representation of the decision problem (i.e., What middleware should we use?).
Therefore this method covers the implementation of the first two task of the ​Establishing
the criteria step of PECA: defining the evaluation requirements and defining the
evaluation criteria (See Appendix A).

The method follows the general guidelines of PECA so we can easily incorporate this
technique in our process. It is also important to notice that the terminology of the
hierarchical decomposition method maps naturally with the terminology used in PECA.
The Table 3.3 shows this mapping.

Table 3.3: Mapping between PECA and the hierarchical decomposition method terminology.
Source: Elaborated by the author.

PECA process Hierarchical decomposition method

Source of evaluation requirements (e.g., system
requirements).

Factors

Evaluation requirements (Goal) Reuse goals

- Evaluation goals

Capability Statements (Question) Evaluation criteria

Measurement Method (Metric) Evaluation Attribute

3.2.2 Analytic Hierarchy Process

AHP (specifically the pairwise comparison technique) is recommended by PECA [16] and
by the hierarchical decomposition method [35] to prioritize the evaluation criteria in the
Establishing the criteria step. Moreover we might also use pairwise comparisons for the
consolidation of heterogeneous data in the ​Analysing the data step. AHP also describe
how to make a sensitivity analysis which is an useful technique for analyzing the data after
they have being consolidated.

Página 31 de 110

Evaluation of distributed-system technologies for ALMA Common Software

AHP has generated lot of controversy [41, 42]. It has been widely adopted and used
successfully by many practitioners, and yet it also has been heavily criticised by some
theoretical academics. Emrouznejada and Marra [43] attempt to provide an objective
literature review about the state of the art of AHP from 1979 to 2017. In this review they
describe some advantages and criticism associated with AHP which are summarized
below.

On one hand AHP is easy to use and flexible. It allows its users to tackle complex MCDM
problems by guiding the construction of a hierarchical model of the problem. It has being
applied in several different domains that range from health and education to computer
science applications. Moreover AHP allows the users to emit verbal judgments about the
priorities of the criteria and the fitness of the alternatives. They also can check the
consistency of their judgments. Finally AHP assist the users to deal with the potential bias
in group-decision making [43].

On the other hand, some critics has questioned the capability of the “principal right
eigenvector of the pairwise comparison matrix to produce true rankings” [43, Sec. 5.2].
Other criticism is related to the potential rank reversals when a non-optimal alternative is
introduced. In addition AHP relies heavily on the consistency of the user’s judgment and
reaching consensus in group-decision making may be difficult [43, Sec. 5.2].

Saaty [36] mention several reasons that promoted the widespread use of AHP in
academia and organizations. Here are the main reasons for using AHP in this dissertation
and even by organizations that are on a similar situation as CTA:

● Its simplicity make it suitable for evaluations teams which members have different
technical backgrounds (e.g., software developers, operators and astronomers).
Moreover people that never used AHP do not require much effort to master it,
making it a low-cost alternative for our evaluation.

● Even though AHP is simple, it allows to address complex MCDM problems and the
middleware selection for ACS clearly falls under this category. One of the more
notable strengths of AHP is its ability to consider intangible criteria which are
difficult to quantify (e.g., coupling) at the same time as quantifiable criteria (e.g.,
bandwidth usage) which often have standard ratio scales or even an absolute
scale.

● It can be executed by a single evaluator or by an evaluation team. In case of
group-decision making it promotes compromise and consensus. It also allows to
negotiate the conflicting interests of the stakeholders.

● AHP doesn’t impose any restriction in the size of the hierarchy used to represent
the problem. If evaluators want to reduce the effort required in the evaluation
they may use a simpler hierarchy than, for example, the one we present in Section
4.2.5. Nevertheless simplifying the model increase the risk of obtaining irrelevant
results.

Página 32 de 110

Evaluation of distributed-system technologies for ALMA Common Software

3.2.3 Other techniques

PECA [16] suggest the use of some techniques which importance is self evident, such as
the gap analysis and the cost of fulfillment. In the next chapter the reader can see that I
generated a hierarchy focused on the benefits provided by the middleware to the system.
Because we are dealing with open source software the cost of choosing one alternative
can’t be trivially calculated. Using gap analysis and cost of fulfillment, the evaluation team
can also provide information about the cost of choosing each alternative to the decision
makers.

3.3 Summary of the solution

Table 3.4 shows the proposed evaluation and selection process and its low-level
implementation.

Table 3.4: Summary of the evaluation process and my implementation proposal.
Source: Elaborated by the author.

PECA (high level) techniques (low level)

Planning the evaluation Straightforward

Establishing the criteria Defining the evaluation
requirements

Hierarchical decomposition
method

Defining the evaluation criteria Hierarchical decomposition
method

Prioritizing the criteria Pairwise Comparisons (AHP)

Collecting the data Quick assessment, literature
reviews and hands-on techniques

Analysing the data Consolidating the data Pairwise comparisons and
weighted aggregation (AHP)

Analysis Sensitivity analysis (AHP), gap
analysis and cost of fulfillment

Making recommendations Straightforward

Página 33 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 4: SOLUTION VALIDATION (THE GUIDE)

The purpose of this chapter is twofold: it validates the proposed middleware selection
process (See Section 3.3) based on [16] by showing its application on a real case (CTA) and
together with Chapter 5, it constitutes a guide that other evaluators may use if they are
interested in implementing the process themselves.

One of the main issues of COTS selection processes is that they don’t always specify how
to do it. In this chapter we can see how to implement the proposed solution for selecting
the best communication middleware for the ACS framework which has to satisfy the
needs of the ACTL software system. Due to the fact that the execution of the evaluation
process for this particular case requires too much work for a lonely evaluator I only
provided a partial execution. Nevertheless I covered the whole process end-to-end in a
way that allows reader to understand the details of the implementation and apply the
same principles while doing a complete execution.

4.1 Planning the evaluation

Even though this step is relatively straightforward, it is very important because it allow us
to unambiguously define the scope of the evaluation. For exemplification, in this section I
show the outputs of each task generated during my PECA iteration.

4.1.1 Forming the evaluation team

The first task is to form the evaluation team. In this execution of PECA I am the only
member of evaluation team (see Table 4.1). Recommendations for assembling a good
evaluation team are presented in Section 5.1.

Table 4.1: Evaluation team.
Source: Elaborated by the author

Name Renato Fulvio Sanhueza Ulsen

Description Thesis student of computing engineering from the Federico Santa María
Technical University which is located in Valparaíso, Chile.

Experience Six months of experience working as a software architect and developer in
Lifeware SAS.

4.1.2 Creating the charter

The evaluation charter for this iteration is presented in Table 4.2. PECA requires
commitment from both the evaluators and the decision makers [16]. Due to the fact that
this is an external evaluation meant to serve as an example, the evaluation team was
unable to obtain commitment from the relevant decision makers, but it will be mandatory
for future iterations of PECA.

Página 34 de 110

Evaluation of distributed-system technologies for ALMA Common Software

 Table 4.2: Evaluation charter.
Source: Adapted from [16]

Statement of evaluation goals Generate a guide for the evaluation and selection of the
communication middleware of ACS so it can support the software
development of modern observatories such as CTA.

Scope of evaluation First a set of technologies selected by the evaluation team are
filtered. Then the candidates that pass the initial filter will be
evaluated deeper.

Team member and roles I am the only evaluator. There are not decision makers in this first
iteration.

Explicit state of commitment Doesn’t apply in this iteration.

Summary of factors that limit
selection

Time frame = 16 weeks.

Summary of decisions that have
already been made

The guide will show an end-to-end execution of the process (i.e.,
all the steps and tasks of the process will be executed).
Nevertheless, due to budget constraints, it will be a partial
execution (i.e., the evaluation team will only collect and analyze
the data about two criteria for showcasing the process).

The communication middleware must be open source software.

4.1.3 Identifying stakeholders

There are at least four types of stakeholders that are relevant to this evaluation:

● Software architects: they are interested in the architectural consequences of
choosing a communication middleware and how they affect the lifecycle of the
system.

● Software developers: they care about how the communication middleware will
impact the software development process of the system.

● Operators: they care about the usability and maintainability of the system.
● Astronomers: they need that the system implements the functional and

non-functional requirements so they can get the desired outcome of its operation
(e.g., meaningful observation results).

4.1.4 Picking the approach

Evaluation depth

The depth of the evaluation depends on two factors:

● Risk of failure: the measure of the impact on the system if a wrong product is
selected [16]. I estimated the risk by analyzing the architecture of the current
ALMA ACS implementation described in [8]: ACS is a software framework located

Página 35 de 110

Evaluation of distributed-system technologies for ALMA Common Software

between the application layer (e.g., applications, COTS and shared software) and
the operating system. It serves as a glue between the components of the
distributed control system of ALMA. It is based on CORBA middleware which
provides communication facilities. Figure 4.1 shows an UML Package Diagram of
ACS. The packages are grouped into four layers. Each package can only use
packages on the same layer or the lower layers.

We can see that the CORBA middleware is in the lowest layer. Many packages on
the upper layers depend on the CORBA middleware and so do the applications
developed by ALMA. It is evident that the risk of choosing the wrong technology to
replace CORBA is too high, because it requires the modification of a significant
amount of software modules, services and applications developed on top of the
middleware, with the financial cost that that implies (e.g., training, design and
development effort). Consequently replacing CORBA is a long-term commitment.

● Complexity of the evaluation: the measure of how likely a wrong product will be
selected [16]. This evaluation is far from trivial because of high amount of
components affected by the selection and the complexity of the organizations
involved (e.g., CTA), their processes and the system context. The stakeholders are
distributed geographically across different continents and logically working in
different subsystems so we can’t fully determine their expectations. Moreover the
evaluation team is under qualified in terms of experience and the large range of
skills that are necessary for making this complex evaluation.

Figure 4.1: ACS packages.
Source: [8].

The selection of a communication middleware for the distributed control system of
modern observatories such as CTA is a considerable and long-term investment. For these
reasons a methodical selection process is required. Now that the depth of evaluation has
been determined is time to pick the evaluation approach.

Página 36 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Best fit vs first fit

The ​first fit ​approach selects the first technology that complies the system needs [16]. On
the other hand the ​best fit approach compare several alternatives to find the best. In the
context of this evaluation should be executed because the following reasons:

● We get a considerable benefit if we acquire more than the minimum required
quality and features [16]. The current ACS implementation might (arguably) be
considered a first fit, but CORBA is struggling to fulfill the requirements of several
organizations including ALMA and CTA. The best fit approach allow us to find a
middleware that is able to fulfill the increasingly stricter requirements of modern
observatories.

● It is cost effective. Investing some resources in the short term to choose the best
middleware for CTA will reduce the risk of the system failing at latter stages of the
software development. Furthermore, the impact of the communication
middleware on the system architecture is so high that choosing the best one will
potentially reduce the long-term development and maintenance cost of the ACTL
system.

Filters

There are a lot of potential candidates for replacing CORBA. Many of them implement
different communication paradigms. The evaluation cost increases with the number of
candidates to be evaluated, therefore it is advisable to filter the initial list of candidates so
we can discard early the clearly unsuitable alternatives [16]. The filters chosen for this
evaluation are the following:

● Does the middleware provide an implementation of the request-reply
communication pattern?

● Does the middleware supports events?
● Does the middleware support a scripting language (Python)?
● Is the middleware compatible with Linux Red Hat Enterprise recompiled

distributions such as Scientific Linux and CentOS?
● Does the middleware have an open source implementation?
● Does the middleware provide the right level of abstraction?
● Is the middleware independent from text-based serialization formats?

More details about the filtering can be found in Section 4.3.1.

4.1.5 Estimating resources and schedule

As we determined in Section 4.1.3, a methodical evaluation with a best fit approach is
required. The high risk and the complexity of the evaluation require it to be rigorous. The
number of potential candidates is very high. A wide range of communication paradigms
for distributed system and implementations are available in the market, so a lot of
technologies should be evaluated. This also means that the evaluation has to be executed

Página 37 de 110

Evaluation of distributed-system technologies for ALMA Common Software

by a team of experienced evaluators with diverse skills (e.g., technical experts, domain
experts, security professionals and end users) [16].

For CTA, the evaluation would have a high short-term cost because the organization
should allocate several resources to allow a team of experts evaluate in detail a long list of
technologies. Nevertheless if they can afford it then it will pay off because a rigorous
evaluation reduces the long-term cost of the system which is very important in a big and
long-term project such as CTA. Besides choosing the best middleware for their needs, the
information generated from this process may be useful during system architecting, design
and integration [16]. More importantly the evaluation reduces the risk of the system
ultimately failing a later stages of the project when it is more expensive to make
corrective actions.

In this document PECA with a best fit approach is executed. Although I do not have the
resources to do a complete evaluation (e.g., collect data about all the relevant evaluation
criteria) this is not a major problem because of the iterative nature of PECA. New
iterations of the process should be executed over time when the system context changes
(e.g., new technologies appears, change of the requirements, more resource allocated for
evaluation, etc) [16]. For these reasons the present document will have an educational
approach so it can serve as an input for future evaluation efforts as a first PECA iteration
and as a guide for executing the process.

This iteration of PECA will consider a bounded number of candidates. The general strategy
is described as follows:

● Select a candidate pool by doing a quick research about the different technologies
used in the present for communication in distributed systems.

● Use the coarse filters (easy and cheap) introduced briefly in Section 4.1.3 to reduce
the pool of potential candidates.

● Continue evaluating the remaining (i.e., most promising) candidates with more
expensive criteria.

The resources destined to this evaluation are the following:

● 70 working days from the author.
● Physical resources for a hands-on experiment that are specified in Section 4.3.3.

These resources are clearly insufficient for a full execution of PECA to select the
appropriate middleware product. Fortunately they are enough for showcasing the
process and creating a guide, which is the objective of this iteration.

4.2 Establishing the criteria

This is the second step of PECA. As described in Chapter 3, I used the hierarchical
decomposition method detailed in [35] for doing the first two tasks of this PECA step:
defining the evaluation requirements and defining the evaluation criteria. Then I finish the

Página 38 de 110

Evaluation of distributed-system technologies for ALMA Common Software

step by prioritizing the criteria using pairwise comparisons detailed in [36]. An overview of
the hierarchical decomposition method is presented in Section 2.6.1.

4.2.1 Analyse the influencing factors

In this section I present a brief analysis of the factors that determine the reuse goals of the
middleware:

● Application requirements: these requirements were extracted from the
requirement specification of ACTL [4]. The requirement specification of ACS for
ALMA [44] was also analyzed to gain better understanding of the problem domain.
ACS is a software framework created to support for the development of a
distributed control and monitoring system. It has to provide communication
capabilities and additional relevant services with the required level of quality (e.g.,
availability, reliability and performance) to accomplish the requirement
specification. Choosing the appropriate communication middleware is key for ACS
being able to fulfill increasingly demanding requirements.

● Application domain and architecture: ACS is the core framework of the distributed
system in the ALMA observatory which implements a distributed object
architecture promoted by the use of CORBA as its communication middleware.
CTA will have high bandwidth networks (e.g., optic fibers of 10 GB/seg each), high
throughput computing and CPU-intensive data processing and analysis. To tackle
the heterogeneity of the system the software architects proposed the use OPC UA
middleware for interoperability of the devices and the use of software bridge
pattern for the communication with ACS components [15]. It is expected that ACS
will take advantage of these conditions. Unfortunately it appears that CORBA does
not fit the architecture very well, for example it provides unnecessary
interoperability that is covered by the use of OPC UA. Also some studies report
that CORBA is inefficient in high-speed networks [45].

Regarding the application domain, ACTL is a soft real-time system because the
correctness of its operations depend on the correctness of its outputs and their
timeliness. Moreover CTA wants to maximize the use of the observatory
operational time and the scientific return. These expectations are source of the
high reliability and availability requirements of ACTL. More information about this
factor can be found in the ACTL architecture document [15].

● Project objectives and constraints: ACS was built with the purpose of standardize
and facilitate the software development in a heterogeneous environment with a
development team scattered around the world with different development
cultures. The ACTL team incorporated the use of software framework such as ACS
and OPC UA as a mean to reduce development cost and the maintenance effort
[15]. This is particularly important for CTA which wants to build ACTL to satisfy “the
need to develop, maintain, and operate a more complex and more stable (when
compared to existing IACT arrays) software system with limited manpower at
moderate cost” [15, p. 5]. For CTA South the manpower cost represent
approximately the 78% of the total cost of the project. In their risk registry the lack

Página 39 de 110

Evaluation of distributed-system technologies for ALMA Common Software

of manpower, which is also too distributed and difficult to coordinate, is the cause
of their top-priority risks. Moreover, CTA will go through a telescope deployment
phase of several years so ACTL should be flexible and configurable enough to
support an incremental deployment [15, p. 13].

● Availability of features: analysing this factor allow us to avoid potential unrealistic
expectations to affect negatively the evaluation process. For instance, Does exist a
middleware product that allows high level programming and provides common
high quality services for supporting the control system, but that also provides a
performant enough communication protocol implementation for the bulk data
transfer needed by CTA (i.e., 77GB/seg approximately for all cameras)? This
suspicion is based on the trade-off between performance and high level
abstraction. The CTA architecture documentation proposes that the high
throughput data transport might be based on a ZeroMQ library [15]. This
technology would force de developers to work in a relative low level of
abstraction. This factor should be continuously checked as we start collecting data
from potentials candidates in the next step of PECA.

● Organization Infrastructure: Any organization using this approach should consider
their own reuse infrastructure and reuse maturity. The organization interest,
experience, commitment and skill in the software reuse are key in its success to
evaluate and use OTS components [35]. I haven’t got access to this information
regarding the ACTL team. Nevertheless, this document might help organizations,
specially modern observatories, interested in creating or improving their own
reuse infrastructure.

4.2.2 Identify and state the reuse goals

After analyzing the factors described above the evaluators can define the reuse goals.
These goals represent the needs of the organization that should be satisfied by the
candidates to be evaluated [35]. The reuse goal statement (high level description) for this
iteration is the following:

The target application of the reuse software is the distributed monitoring and control
system of CTA (ACTL). The OTS software being evaluated is a communication middleware
technology that must be integrated into the ACS framework so it can support the
development of the distributed system by providing standardized communication and
high level services to the system components. The expected benefits (abstract and simple)
are summarized in Table 4.3.

Possible constraints for OTS reuse: there are not many restrictions for the reuse of OTS
software in this evaluation. Nevertheless, the ACTL software “prescribes the use of
software frameworks, the application of widely accepted standards, tools and protocols,
and follows basically an open-source approach” [15, p. 5].

Página 40 de 110

Evaluation of distributed-system technologies for ALMA Common Software

 Table 4.3: Categorized reuse goals.
Source: Elaborated by the author

Reuse Goals

Product Characteristic Goals

Communicate components in the distributed system.

Provide support for ACS common services such as monitoring, logging and alert services.

Enable remote control of the system (e.g., from the Internet).

Enable high reliability and availability of the system.

Provide secure communication between subsystems and components.

Enable high system performance.

Communicate an increasing amount of components (devices) in the system without having a significant
negative impact in the performance (scalability).

Development Process Goals

Reduce the inherent complexity of the distributed system.

Provides a common platform/standard that contributes to unify the heterogeneous and distributed
development environment.

Reduce the overall development effort required to build the system.

Support an iterative and incremental software development of the system.

Maintenance process goals

Reduce the risk of developing an unmaintainable complex system.

Reduce the overall maintenance cost.

Cost budget for the use of OTS software: Even though this information is not relevant to
this execution of the process, in a next iteration, the ACTL team should state how much
they are able to spend to replace CORBA with a new middleware. Because the OTS
software is open source, the cost of using it can be translated into the selection and
integration effort required which might be measured in several units such as staff-hours
[46]. Considering the project objectives and constraints discussed above we might expect
that CTA would consider replacing CORBA if the following conditions are met:

● The cost is affordable in the short-term. Probably some ACS services (based on
CORBA services) will have to be implemented again using the available features of
the CORBA replacement.

Página 41 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● The redesign of ACS and the integration of the new middleware do not hinder the
compliance of the ACTL project deadlines.

● The benefit in the long term (e.g., increased system quality, reduced development
effort and maintenance effort), overshadows the short term cost.

4.2.3 Identifying and formulate evaluation goals

As introduced in Section 2.6.1, the evaluation goals represent the objectives of the
evaluation process. We derive them from the reuse goals and formulate them using the
Goal-Question-Metric syntax [35]. In Table 4.4 one of the many evaluations goals for this
iteration is presented.

Table 4.4: Performance as evaluation goal with GQM notation.
Source: Adapted from [35].

ID QC-02

Object (Entity) Communication middleware

Focus (Issue) Performance

Purpose Evaluate

Point of View -

As pointed out in [35] the object is the entity being analyzed and the focus is the attribute
of interest. The object and focus can be extracted directly from the respective reuse goal
in Table 4.3. The purpose is almost always evaluate, but in some cases it might be simple
characterization to understanding or even prediction. The point of view field is relevant
when two different stakeholders are interested in the evaluation goal and their views
have to be considered. I added the ID field to keep track of the evaluation goal during the
decomposition.

We can see another example in Table 4.5. If we go back to the influencing factors we can
find that the project highest risks are originated by limited manpower. This lack of
resources was the source of several reuse goals included in Table 4.3 under the
development process and ​maintenance process categories. In similar fashion these reuse
goals generated the need to evaluate the impact of the communication middleware on
the manpower efficiency. As the reader might notice, this evaluation goal is still too
abstract to be easily measurable.

Table 4.5: Manpower efficiency as evaluation goal with GQM notation.
Source: Adapted from [35].

ID SC-02

Object (Entity) Communication Middleware

Focus (Issue) Manpower efficiency support

Purpose Evaluate

Point of View -

Página 42 de 110

Evaluation of distributed-system technologies for ALMA Common Software

4.2.4 Define high level criteria

The next task of the hierarchical decomposition method is to decompose each evaluation
goal in “a set of high level criteria that characterize it” [35, Sec. 3.2]. Continuing the
examples used in Section 4.2.3, I decomposed the evaluation goals into high level criteria.
The performance of the middleware can be characterized by the following criteria:

● Time behaviour: “the capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions” [47, Sec. 6.4.1].

● Resource utilization: “the capability of the software product to use
appropriate amounts and types of resources when the software performs its
function under stated conditions” [47, Sec. 6.4.2].

The impact of the middleware in manpower efficiency might be characterized by the
following criteria:

● System extensibility support: the middleware contribution to the ability to extend
the system and the effort required to do it. Extensibility effectively reduces the
development and maintenance effort. It also increases the reusability of the
components of the system.

● System portability support: the middleware contribution to the ability to port
components and services to different platforms and the effort required to do it.

● Reuse of legacy components: the middleware enables the reuse of legacy
component such as the GUI developed by ALMA.

● System transparency support: the middleware hides some of the complexity of the
distributed system reducing the cognitive burden of the developers and thus the
development effort.

4.2.5 Can we easily measure the criteria?

The reader might notice that the criteria presented in Section 4.2.4 are still too abstract to
be measured in a straightforward manner. For that reason, as suggested in Section 2.6.1,
we must continue decomposing it. For example let’s focus on ​time behaviour and ​system
extensibility support​. The first one is easy to decompose, as we typically see in middleware
benchmarking, in two criteria:

● Latency: “the amount of time it takes for a client to invoke a two-way operation in
a server and receive the results of the operation” [48, p. 3]. We are particularly
interested on the overhead introduced by the middleware.

● Throughput: “how much data can move the middleware per unit of time” [48, p.
6].

The second one is more tricky. The extensibility of a distributed system is improved by
high cohesion and low coupling. Cohesion can be defined as “the manner and degree to
which the task performed by a single software module are related to one another” [49, p.
17]. One can argue that cohesion is application dependent and it is not directly related to
the middleware used to enable communication between components. Nonetheless the

Página 43 de 110

Evaluation of distributed-system technologies for ALMA Common Software

coupling of a distributed system is affected by the choice of communication middleware
as described in [50]:

● Default coupling: the baseline coupling introduced to the system by the
communication middleware. This coupling depends on the interface types
provided by the middleware.

We can measure the subcriteria generated in this section directly so we register them as
evaluation attributes. Latency and throughput can be measured quantitatively while
default coupling can be determined qualitatively through a description of the interfaces of
the middleware as detailed in Section 4.3.2.

Then the evaluators have to continue decomposing the remaining high level evaluation
goals and criteria. We can see the full decomposition of the evaluation goal QC-02 in Table
4.6.

Figure 4.2 shows the result of the hierarchical decomposition method. The red numbers
are the priorities of the criteria that were generated after the decomposition (see Section
4.2.6). This hierarchy represent the vision that the evaluation team has about the system
and its needs regarding the selection of the communication middleware. It is important to
note that two different evaluation teams may arrive to different representations of the
same problem due to potential differences in their knowledge and experiences. In this
PECA execution I attempted to compensate my lack of experience with an extensive
research about distributed systems, open source software and the ACTL system.

Section 5.2 provides some guidelines and recommendations to assist the evaluators in
choosing good evaluation criteria.

Página 44 de 110

Evaluation of distributed-system technologies for ALMA Common Software

 Table 4.6: Full decomposition of an evaluation goal.
Source: Elaborated by the author

Evaluation Goal

ID QC-02

Object (Entity) Communication Middleware

Focus (Issue) Performance

Purpose Evaluate

Point of View

Evaluation Criteria

QC-02-01 Time behaviour

Definition The capability of the software product to provide appropriate response and
processing times and throughput rates when performing its function, under
stated conditions.

QC-02-01-01 Latency

Definition The amount of time it takes for a client to invoke a twoway operation in a server
and receive the results of the operation.

Measurement Number of interaction per second

QC-02-01-02 Throughput

Definition How much data can move the middleware per unit of time

Measurement Mbits/s of data moved by the middleware

QC-02-02 Resource utilization

Definition The capability of the software product to use appropriate amounts and types of
resources when the software performs its function under stated conditions.

QC-02-02-01 CPU consumption

Definition Number of CPU cycles spent by the middleware in order to marshall and
unmarshall the data. Complex serialization methods consume more CPU.

Measurement % of time spent in the middleware for a particular workload.

QC-02-02-02 Network bandwidth usage

Definition The amount of bytes that the middleware add to the message’s payload increase
the bandwidth usage. Simple serialization methods tend to use more bandwidth.

Measurement Serialization overhead (MB)

QC-02-02-03 Memory consumption

Definition The amount of memory needed by the middleware. Complex encoding tends to
need more supporting data structures than simple encodings. A non-optimal
buffer size can reduce performance.

Measurement Working set size (MB)

Página 45 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 4.2: Hierarchical representation of the MCDM problem and the local priorities of each criterion.
Source: Elaborated by the author

Página 46 de 110

Evaluation of distributed-system technologies for ALMA Common Software

4.2.6 Establishing priorities

After generating a hierarchical structure to represent the decision-making problem, the
evaluators should assign priorities to the criteria to reflect the fact that not all the criteria
are equally important. The hierarchical decomposition method and PECA propose the use
of Analytic Hierarchy Process (AHP) to accomplish this task. The rationale of the use of
AHP in the context of this evaluation is presented in Chapter 3.

For this task we just need the pairwise comparison technique described in AHP. Once a
hierarchy was generated the next step in AHP is to compare the criteria in pairs using
judgments that are “based on knowledge and experience to interpret data according to
their contribution to the parent node in the level immediately above” of the hierarchical
structure [36, Sec. 3]. The judgments are made using the fundamental scale presented in
Table 4.7. This scale enable the evaluators to map a verbal statement to a natural number
between 1 and 9. In pairwise comparisons we assign the value 1 to the less important
criterion and then we make a verbal statement about the level of dominance of the most
important criterion in the pair [36].

Table 4.7: Saaty Fundamental scale.
Source: Adapted from [51]

The Fundamental Scale for Pairwise Comparisons

Intensity of
importance

Definition Explanation

1 Equal importance Two elements contribute equally to the
objective

2 Equal to moderate importance

3 Moderate importance Experience and judgment slightly favor one
element over another

4 Moderate to strong importance

5 Strong importance Experience and judgment strongly favor one
element over another

6 Strong to very strong importance

7 Very strong importance An element is favored very strongly over
another, its dominance demonstrated in
practice

8 Very strong to extreme importance

9 Extreme importance The evidence favoring one element over
another is of the highest possible order of
affirmation

Reciprocals of
above

If element​ i​ has one of the above
nonzero numbers assigned to it when
compared with element​ j​, then ​j​ has
the reciprocal value when compared
with​ i

A reasonable assumption

Rationals Ratios arising from the scale If consistency were to be forced by obtaining ​n
numerical values to span the matrix

Página 47 de 110

Evaluation of distributed-system technologies for ALMA Common Software

The judgements should be registered because they eventually must be processed
mathematically to generate the priorities of the criteria. This can be done by using a
spreadsheet or a specialized software for AHP.

The reader should understand that these priorities depend on the evaluation team and
the context in which the judgements are made because prioritization of the criteria is an
inherently subjective task. Changes on the evaluation team or the system context could
potentially generate variations on the judgements if this process is repeated in the future.

I followed a top-down approach by making pairwise comparisons about the importance of
the four types of criteria proposed by the hierarchical decomposition method (i.e.,
functional requirements (FR), product quality characteristics (QC), domain and
architecture compatibility (DA) and strategic concerns (SC)) regarding the goal which is the
selection of a suitable communication middleware for the ACS framework and CTA (see
Figure 4.2). A summary of these pairwise comparisons (PC) is presented in Table 4.8.

Table 4.8: Pairwise comparisons regarding the goal using the Saaty scale.
Source: Elaborated by the author.

PC #1 FR 1 QC 1

Functional requirements supported by the middleware are important because they have a considerable
impact not only in the development effort but also in the performance and reliability of the services. One
important reason for using the ACS framework are its standardized services. Without communication
middleware services the ACTL developers would have to reimplement the ACS services from the scratch
struggling to achieve their required levels of performance and reliability.

Product quality characteristics are important because they reflect the maturity of the implementation of
the services and communication protocols which is an internal metric of its reliability. If the middleware
services are not reliable enough they are useless. Moreover we would want to improve the current
performance of ACS while maintaining its scalability. Nevertheless ACS has already being used successfully
in end-to-end prototypes.

Functional Requirements​ are equally as important as ​Product Quality Characteristics.

PC #2 FR 1 DA 3

Functional requirements importance is described as above.

Domain and architecture compliance is important because it addresses one of the hardest requirement of
the system: high reliability and availability to maximize the scientific return. Not only the middleware
should be reliable, it also should provide additional features such as fault tolerance support for achieving
these domain related goals. CTA has put considerable effort in the design of the ACTL architecture to tackle
the great heterogeneity of the system. Even though the software and hardware heterogeneity is covered by
OPC UA, programing language interoperability is still a desirable feature. More importantly the middleware
should serve as a platform to unify heterogeneous cultures of geographically dispersed software
development teams, partially mitigating one of the top priority risk of the ACTL software system [15].

Domain and Architecture Compliance​ is moderately more important than ​Functional Requirements​.

Página 48 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Table 4.8: Continued.

PC #3 FR 1 SC 3

Functional requirements importance is described as above.

Strategic concerns are important because they address many high priority risks of the ACTL software
related to the limited manpower available for developing a complex system with high quality requirements
in a timely fashion. They also address the fact that the ACTL system will be operated and maintained by a
reduced workforce. Finally strategic concerns also takes the marketplace trend and the open source project
supporting the middleware into consideration which are important reasons to replace CORBA.

Strategic Concerns​ are moderately more important than ​Functional Requirements.

PC #4 QC 1 DA 3

Good product quality characteristics are desirable and they indirectly affect availability of the whole
system. Nevertheless the domain and architecture compatibility addresses the availability of the system
directly and also the architecture based hard constraints such as the use of OPC UA middleware.

Domain and Architecture Compatibility is moderately more important than ​Product Quality
Characteristics​.

PC #5 QC 1 SC 3

The importance of the product quality characteristics is described as above. Meanwhile the Strategic
Concerns address the feasibility of developing and maintaining the system which are high priority risks.

Strategic Concerns​ are moderately more important than ​Product Quality Characteristics​.
PC #6 DA 1 SC 1

Both criteria deal with high priority risks of ACTL, the feasibility and success of the whole project. Strategic
Concerns address several high priority risks while ​Domain and Architecture Compliance also deals with hard
constraints.

Domain and Architecture Compliance​ is equally as important as ​Strategic Concerns.

A summary of this type is not an essential part of AHP, but it may be useful to record the
rationale of the judgments. Pairwise comparisons help to deal with the inherent
subjectivity of assigning priorities by making the judgments more defensible and accurate.
Furthermore they also show the insight, experience and knowledge of the evaluators [52].

After we do all the required pairwise comparisons we can use a spreadsheet or an AHP
decision making software to derive the priorities. In this iteration I entered the
judgements in the software Super Decisions v3 for automatic calculation of the priorities
of the criteria. Super Decisions v3 is the only free educational software that implements
AHP. It was developed by the team of the the creator of the process. It provides various
forms for entering the judgments. Figure 4.3 and Figure 4.4 show two of the five modes
for entering the judgements in Super Decisions v3.

Página 49 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 4.3: Verbal mode for entering judgements in Super Decisions v3.

Source: Elaborated by the author

Figure 4.4: Matrix mode for entering judgements in Super Decisions v3.

Source: Elaborated by the author

The resulting local priorities are automatically obtained as is shown in Figure 4.5. The
software also calculates an inconsistency index. This index measures the transitivity and
consistency of the judgements. In this example the judgments are perfectly transitive so
the inconsistency index is zero. Saaty [36] state that the value of this index has to be less
than 0.1 for the results being meaningful. If the inconsistency of the judgments is too high,
the evaluators have to review them and after a discussion they have to carefully modify
them.

Figure 4.5: Local priorities of the criteria.

Source: Elaborated by the author.
The local priorities of each node regarding to its parent node are shown with red numbers
in Figure 4.2. The evaluators will need these priorities during the consolidation of data in
the ​Analysing the data step of PECA. For now the reader can notice what are the most
important criteria at each level of the hierarchy according to me, based on the analysis of
the the ACTL software system documentation and its context.

In this section the prioritization was made by only one evaluator. Section 5.3 shows some
recommendations for conflict resolution and group decision-making.

Página 50 de 110

Evaluation of distributed-system technologies for ALMA Common Software

4.3 Collecting the data

One might argue that the main objective of this step is to gather the necessary data that
allows the evaluators to discriminate how each candidate perform in respect to the
previously defined evaluation criteria. This is not necessarily true, because collecting data
also increases the understanding of the evaluators about the product marketplace and
system context [16]. If we recall the previous steps of PECA there are some task that are
dependent on the evaluators experience and knowledge. During the ​Collecting the data
step the evaluators knowledge improves. They realize how far their understanding was
from reality and they might discover some unpleasant facts [16]:

● Product capabilities different from the evaluation team expectations: for example,
I expected that ZeroMQ was going to outspeed the other candidates in almost
every scenario. This expectation was proven wrong in my latency benchmarking
described in Section 4.3.3.

● Unexpected interactions and architectural mismatches: An interesting concern
might be the interoperability between the candidates and OPC UA middleware. An
outstanding communication middleware that has problems to work with OPC UA
(functional and non-functional interoperability) will generate an architectural
mismatch that must be addressed.

These unpleasant findings are good because PECA is an iterative process. With this
improved knowledge and more accurate understanding we can start a new iteration of
PECA to get more relevant and precise results.

Section 5.4 present some tips to choose adequate techniques for collecting data.

4.3.1 Quick Assessment (Filtering)

Even though we might consider this task fairly straightforward, in this evaluation I
followed the guidelines proposed by Wasserman, Pal and Chan [39] for executing an
effective quick assessment which are described in Section 2.6.3.

In this work I am interested on evaluating the communication middleware alternatives for
the ACS framework so it can be used for the development of ACTL system. Therefore, in
this case, it is clear that the target usage of the product is for development purposes. For
simplicity and for maximum filtering of the candidates I chose a policy of ​all positive for
passing the filtering phase (i.e., only the middleware candidates that satisfy all the viability
indicators will be further evaluated) .

In [39] a set of reusable viability indicators are provided. Nevertheless the evaluators are
encouraged to use indicators that are relevant in their system context. It is fundamental
that these indicators are easily measurable so the quick assessment can be indeed quick.
One example of an important viability indicator that is not easily measurable by me is the
license compatibility of the middleware with the ACTL project. Below I present the viability

Página 51 de 110

Evaluation of distributed-system technologies for ALMA Common Software

indicators chosen for this quick assessment, describe their importance and the policy for
passing each one.

Does the middleware provide an implementation of the request-reply communication
pattern?

ACTL has to provide a framework to control all telescopes and auxiliary systems on a CTA
site. Specifically two basic interactions are covered by this viability indicator:

● Command delivery: “The control system should be able to deliver commands to
the process in charge of the target device and the command delivery should be
reliable i.e., commands must always be acknowledged” [4, p. 10].

● Query for data: a client application can request data from the process in charge of
an specific device. For example, an operator may ask for the temperature value of
a thermometer using a GUI.

In this assessment we are looking to filter potential candidates that could eventually
replace CORBA as the main communication middleware of ACS. The basic functionality
expected by such a middleware is the implementation of the required patterns and
protocols that allow to communicate remote processes.

There are many ways to share data, but there are only two main integration styles for
sharing functionality: remote procedure call and messaging [53]. There are some
trade-offs between these two styles, but they both support the interactions mentioned
above by implementing the request-reply pattern [53, 54]. A message based middleware
will probably need two point-to-point channels: one for sending the request (i.e., a
command or query) and other for receiving the reply (i.e., a return value or result of the
query). Any candidate that provides a request-reply protocol implementation over TCP
will pass this filter.

Does the middleware supports events?

In addition to control, ACTL has to provide a framework to monitor the functioning of all
instruments and handle errors, alerts and warnings from instruments in the CTA sites.
Events are a good way for transmitting alerts, warnings and exceptions. Events are
commonly supported by an implementation of the publish-subscribe pattern [53, 55]
which is also very useful for sampling the data of the different devices for monitoring
purposes.

If the main communication middleware does not support events then other technologies
will have to be integrated into ACS to cover this requirement (e.g., a secondary
middleware such as DDS in the ALMA implementation of ACS). These technologies “can
be expensive, can lead to vendor lock-in and can increase the learning curve for
developers” [53, p. 40] effectively increasing the complexity of the system and the burden
on developers.

Página 52 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Garcia [54, p. 33] defines event-based middleware as “a middleware for large-scale
distributed systems that implements publish-subscribe communication between
components, providing a scalable and efficient event service.” For the purpose of this
assessment any candidate that provides a publish-subscribe protocol implementation or a
more sophisticated event service will pass this filter.

Does the middleware support a scripting language (Python)?

The middleware should support a scripting language that can serve as a base for the ACTL
scripting language which will be used to “define observing scripts, as well as to serve as a
suite of interactive commands to be used by hardware engineers for testing or debugging
the equipment, or by operators for developing new observation procedures” [15, p. 30].
This indicator is important because ACTL should support “scripting of sequences of control
actions” as stated in the requirement specification [4, p. 11].

Nonetheless CTA haven’t specified which features are looking in the scripting language.
The ACTL team is considering the use of the ALMA Control Command Language (CCL)
which is a simple Python wrapper of the Control Software. Python was chosen as the base
of the CCL because it has the following characteristics [8, Sec. 3.2.1]:

● Object oriented
● Platform independent
● Provides flow control, variables and procedures
● Plug and play to install scripting language
● Connects to CORBA
● Easy to use for non-programmers
● Rapid prototyping similar to programming languages used in the project
● GUI development
● Embeddable into code for interactive applications

Any middleware that supports Python or another similar scripting language will pass this
filter.

Is the middleware compatible with Linux Red Hat Enterprise recompiled distributions

such as Scientific Linux and CentOS?

The ACTL team has already made several architectural decisions about the ACTL system.
The operating system for all servers will be based on Red Hat Enterprise Linux (RHEL)
recompiled distributions (e.g., Scientific Linux and CentOS) [15]. Wegner et al. [56, p. 4]
reported that the ALMA ACS distributions are executed on a RHEL re-distribution which
will therefore be used on all full-scale ACTL computers.

RHEL has been developed for long-term supported commercial usage. Scientific Linux (SL)
as a RHEL re-compilation has successfully been used inside Particle and Astroparticle
Physics projects for many years such as the Large Hadron Collider (LHC). Furthermore,

Página 53 de 110

Evaluation of distributed-system technologies for ALMA Common Software

“Inside CTA, important parts of the on-line and off-line software is already running under
SL, e.g., the Grid middleware and the Alma Common Software” [15, p. 47].

Any middleware that supports Red Hat Enterprise Linux will pass this filter.

Does the middleware have an open source implementation?

The ACTL team didn’t plan any software licence cost yet because the approach taken by
ACTL is to use open source software, whenever possible [15].

The usage of open source software may provide several advantages to CTA. First of all it
helps to avoid vendor lock-in. Moreover by having a community continuously fixing and
improving the middleware, the use of open source software will reduce the burden of
ACTL developers and maintainers which can focus on improving the ACTL specific
software. Third party software lifespan is difficult to evaluate [15] and the use of open
source software allows the ACTL team to take over the maintenance in case of need.

Any middleware supported by an active open source project will pass this filter.

Does the middleware provide the right level of abstraction?

Section 2.3 provides a taxonomy of middleware paradigms elaborated by Alrahmawy [25].
This classification is given in order starting from the lowest level of abstraction to the
highest.

“The concept for the ACTL software accounts for the need to develop, maintain, and
operate a more complex and more stable (when compared to existing IACT arrays)
software system with limited manpower at moderate cost” [15, Sec. 1.1]. To achieve this
the developers should be able to work at a high level of abstraction so the development
and maintenance effort required can be effectively reduced. On the other hand ACTL
software has high performance requirements that demand to work at a low level of
abstraction, but low-level technologies reduce the system reliability, flexibility and reuse
[45]. A balance is required in the abstraction and optimization trade-off.

ACS was built on top of CORBA which implements the Object Request Broker paradigm.
Moreover ALMA developed its own custom CCM using CORBA increasing the level of
abstraction even further [7]. In doing so the ACS framework enforces the Component
Oriented Architecture Paradigm and it is struggling to meet the performance
requirements. It might be a good policy to stop looking for middleware with a higher level
of abstraction than ACS. On the other hand some projects working in the same area as
ACS, such as CERN’s Controls System [10, 57] and TANGO, decided to replace CORBA with
ZeroMQ which provides a lower level of abstraction. While CERN expects to replace
CORBA completely TANGO [58] uses CORBA for point-to-point communication and
ZeroMQ for publish-subscribe communication. Therefore we can use the paradigm
implemented by ZeroMQ as a conservative lower bound for the right level of abstraction.

Página 54 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Any middleware that is between the fourth and seventh level of abstraction will pass this
filter (see Section 2.3).

Is the middleware independent from text-based serialization formats?

The middleware should implement its own serialization of messages or at least it should
be compatible with a third party serialization library. In any case it must not rely on
text-based serialization formats like XML as its only serialization format.

Even though XML enables easy and powerful integration between systems, its drawbacks
make it unsuitable for ACTL. XML as a tag-based language is usually “bloated with long
named tags, complex data structures and big amounts of plain texts data” making its
serialization and deserialization “complex, heavy and slow” [59, p. 2]. Because XML is a
text based format, XML messages are usually very large in size compared to the original
data requiring more bandwidth to transport them.

The middleware will pass this filter if it doesn’t rely exclusively on text-based serialization
for transport.

Another indicator that didn't make it into the quick assessment

It can be argued that support for bulk data transfer is also a communication concern and
should be used a an initial filter in the quick assessment. I didn’t include bulk data transfer
support for two reasons:

● Hard to evaluate: it would require a throughput benchmarking with a simulation of
the real system. At least real camera data should be used.

● Unrealistic expectation: during the execution of PECA I came to the conclusion that
it might be unrealistic to ask for a high level of abstraction middleware suitable for
supporting the control system that also provides the very high performance
required (throughput) for bulk data transfer in CTA. Using this filter could
potentially eliminate too many candidates. Furthermore, CTA already proved the
feasibility of using ZeroMQ or TCP for bulk data transfer [15] so an integration of
another technology with ACS for accomplish this task is considered a viable
solution.

Nevertheless this is an important criterion that should be evaluated for the candidates
that pass the filtering phase.

Quick assessment results

Table 4.9 summarizes the result of the initial filtering (quick assessment) in which each
candidate, of a selected middleware pool, was evaluated using the previously described
filters (viability indicators):

Página 55 de 110

Evaluation of distributed-system technologies for ALMA Common Software

A. Does the middleware provide an implementation of the request-reply
communication pattern?

B. Does the middleware supports events?
C. Does the middleware support a scripting language (Python)?
D. Is the middleware compatible with Linux Red Hat Enterprise recompiled

distributions such as Scientific Linux and CentOS?
E. Does the middleware have an open source implementation?
F. Does the middleware provide the right level of abstraction?
G. Is the middleware independent from text-based serialization formats?

Table 4.9: Quick assessment summary.
Source: Elaborated by the author

Technology A B C D E F G Score

Open MPI [60] ✕ ✕ ✓ ✓ ✓ ✕ ✓ 4

RTI Connext DDS [61] ✓ ✓ ✓ ✓ ✕ ✓ ✓ 6
OpenDDS [62] ✕ ✓ ✕ ✓ ✓ ✓ ✓ 5
ZeroMQ [63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
YAMI4 [64] ✓ ✓ ✓ ✓ ✕ ✓ ✓ 6

IBM MQ [65] ✓ ✓ ✓ ✓ ✕ ✓ ✓ 6
Apache Thrift [66] ✓ ✕ ✓ ✓ ✓ ✓ ✓ 6

gRPC [67] ✓ ✕ ✓ ✓ ✓ ✓ ✓ 6
EPICS [68] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Java RMI [69] ✓ ✕ ✕ ✓ ✕ ✓ ✓ 4
ZeroC Ice [70] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
CORBA [26-28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
Web Services 1 ✓ ✓ ✓ ✓ ✓ ✕ ✕ 5

WCF [71] ✓ ✕ ✕ ✕ ✕ ✕ ✓ 2
Apache CXF [72] ✓ ✕ ✕ ✓ ✓ ✕ ✓ 4

Protocol Buffers [73] 2 N/A N/A ✓ ✓ ✓ N/A ✓ N/A

According to my previously chosen policy, from the 16 candidates only four passed the
filtering phase: ZeroMQ, EPICS, Ice and CORBA (as is implemented in ACS).

4.3.2 Literature review about default coupling

The ISO/IEC/IEEE 24765 standard defines extensibility as “the ease with which a system or
component can be modified to increase its storage or functional capacity” [74, p. 136].
Even though there is a trade-off between extensibility and performance, software
developers build extensible software “mainly for reducing the cost of implementing new
or similar functionality in a system” [75, Sec. 1.1.2]. This characteristic becomes especially

1 Due to the great offer of technologies for implementing Web Services, in this quick assessment I take into
account the things that most implementations do from a theoretical standpoint.
2 Protocol Buffers is just for serializing structured data and thus it can not be compared directly with
communication middleware alternatives.

Página 56 de 110

Evaluation of distributed-system technologies for ALMA Common Software

beneficial when we develop large, complex and expensive distributed systems such as
ACTL.

One critical factor for attaining high system extensibility is to promote low coupling.
Yourdon and Constantine [76] introduced the concept of coupling as the amount of
knowledge we need about one module to be able to understand another module.
Wijegunaratne and Fernandez [50] adapted this notion of coupling to distributed systems.
Moreover they recognize that there are two main sources of coupling in distributed
systems: the middleware which provide the default coupling and poor design choices.

In a distribution environment the coupling of the system has an impact in the
development and the maintenance. Some of these consequences are described in [50].
For example after designing a distributed system if we modify the external interfaces of a
shared software component it may cause a ripple effect of changes across the entire
system. Furthermore if the development team is geographically dispersed, these changes
will also require that the potential conflicting parties renegotiate and reach consensus.
Finally a component struggling to meet the required QoS may negatively affect other
tightly coupled components and the development teams might be unable to solve the
problem if the problematic component is out of their jurisdiction.

As the reader might already notice, knowledge is difficult to quantify. Fortunately for us
Wijegunaratne and Fernandez [50] created a framework to assist evaluators in making
effective decisions, such as choosing the correct middleware for the system, by describing
general desirable properties that decrease the coupling in distributed systems. Specifically
the middleware contributes to the coupling of the system in two major ways: “by being
the repository of all or part of the administrative information, and secondly by extending
one or more specific programming interface types, each with a default level of coupling to
the application” ​[50, Sec 5.4]​. The framework allowed me to define this evaluation
attribute during the execution of the hierarchical decomposition method as described in
Table 4.10.

Table 4.10: Definition of default coupling as an evaluation attribute.
Source: Elaborated by the author

SC-02-01-01 Default coupling

Definition The baseline coupling introduced to the system by the communication
middleware.

Description Description of interfaces types and the administrative information management
provided by the middleware.

This means that the data to be collected is a qualitative description. After studying the
framework, I identified the data items that should be included in the description for each
interface provided by the middleware [50]:

Página 57 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● Ease of the passage of control: communication interfaces that force or facilitate
the passage of control from one system component to another are able to induce
higher coupling than those who don’t.

● Administrative information location: storing information such as the names of the
components, their location (i.e., network address and protocol) and the users
access authorization in the middleware induces less coupling than keeping this
information at the application level.

● Administrative information fragmentation: storing the administrative information
in a centralized location induces less coupling than fragmenting it in the distributed
system.

● Communication types provided: the middleware provide interfaces which can be
characterized as ​available ​or ​non-available​, ​conversational ​or ​non-conversational​,
synchronous ​or ​asynchronous​, ​transactional ​or ​non-transactional ​and ​static ​or
dynamic​. The coupling provided by a particular interface depends on the
communication types associated with it.

● Binding: It is “the resolution of aspect of contacts between modules.” In other
words “is the act of associating some aspect of one software module with another
remote module” [50, pp. 103-104]. The earlier the binding, the stronger the
coupling between the application components. There are three types of bindings:
Binding to form/structure, to implementation and to occurrence.

For gathering this data about the middleware I used several sources such as the official
websites of the products, their user manuals and their API documentation. Then I
summarized the collected data about the candidates and their communication interfaces
in tables such as Table 4.11.

Table 4.11: Data collected about the ZeroC Ice default coupling.
Source: Elaborated by the author

ZeroC Ice

Interface Type Static Invocation

Easy passage of control Average

Administrative
information location

Ice stores the administrative information in the infrastructure. It provides two
locations services: IceGrid and IceDiscovery.

Administrative
information
fragmentation

The administrative information is centralized in a location service.

Communication types ● Available
● Synchronous and Asynchronous
● Non-Conversational
● Non-Transactional
● Static

Binding to form This binding occur early, at development time, when the software developers use
Specification Language for Ice (SLICE) to define the interfaces that the
applications are going to use. Then the SLICE compilers generate methods for
synchronous and asynchronous invocations.

Página 58 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Table 4.11: Continued.

Binding to
implementation

Thanks to SLICE the binding to implementation never happens because the
developers can change the implementation language of any component to some
other language supported by Ice using the SLICE compiler without having to
modify the components with which interacts.

Binding to Occurrence The binding to occurrence happens late because the components can ask the
infrastructure (i.e., Ice location service), at runtime, for the administrative
information required to connect with other components.

Interface Type Dynamic Invocation

Easy passage of control Difficult

Administrative
information location

Ice stores the administrative information in the infrastructure. It provides two
locations services: IceGrid and IceDiscovery.

Administrative
information
fragmentation

The administrative information is centralized in a location service.

Communication types ● Available
● Synchronous and Asynchronous
● Non-Conversational
● Non-Transactional
● Static (early binding to form)

Binding to form This binding occur early, at development time. Even though the dynamic
invocation interface allows to build the request at runtime, Ice doesn’t provide a
mechanism for discovering the remote interfaces during runtime so the
components have to agree about the invocation format (name and list of
parameters) at development time using SLICE.

Binding to
implementation

The client and servers don’t bind to implementation if we only use the languages
supported by Dynamic Invocation (i.e., C++, Java and C#).

Binding to Occurrence The binding to occurrence happens late because the components can ask the
infrastructure (i.e., Ice location service), at runtime, for the administrative
information required to connect with other components.

Interface Type IceStorm

Easy passage of control Difficult

Administrative
information location

Ice stores the administrative information in the infrastructure. IceStorm can also
persist administrative information about the publish-subscribe communication.

Administrative
information
fragmentation

The administrative information is centralized in an Ice location service. IceStorm
maintains information about topics, links, and subscribers in a database.

Communication types ● Available
● Synchronous and Asynchronous
● Non-conversational
● Non-transactional
● Static (early binding to form)

Página 59 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Table 4.11: Continued.

Binding to form This binding occur early, at development time. Developers have to define topic
interface using SLICE which then are implemented by the subscribers as described
in the Ice manual:

A topic is essentially equivalent to an application-defined Slice
interface: the operations of the interface define the types of messages
supported by the topic. A publisher uses a proxy for the topic interface
to send its messages, and a subscriber implements the topic interface
(or an interface derived from the topic interface) in order to receive
the messages. This is no different than if the publisher and subscriber
were communicating directly in the traditional client-server style; the
interface represents the contract between the client (the publisher)
and the server (the subscriber), except IceStorm transparently
forwards each message to multiple recipients [77, Sec. 44.3.2].

Binding to
implementation

Similarly to the static interface, with IceStorm the publishers and subscribers
never bind to implementation thanks to SLICE.

Binding to Occurrence Publishers and subscribers bind to occurrence late, at runtime, as described in the
Ice manual:

IceStorm's default behavior maintains information about topics, links,
and subscribers in a database. However, a message sent via IceStorm is
not stored persistently, but rather is discarded as soon as it is delivered
to the topic's current set of subscribers. If an error occurs during
delivery to a subscriber, IceStorm does not queue messages for that
subscriber [77, Sec. 44.3.7].

So both publishers and subscribers have to be available at the same time or an
exception is generated (e.g., ​ObjectNotExistException or​ ​NotRegisteredException) ​.

4.3.3 Latency benchmarking

Performance is a quality attribute of middleware that can be measured in several different
ways. First of all we might measure the time behaviour of the middleware and its resource
utilization [47]. For middleware technologies time behaviour is often measured in terms of
latency and throughput while the resource utilization is measured in terms of CPU
consumption, bandwidth usage and memory consumption [48]. All the aforementioned
metrics are important to understand the capabilities of the middleware and they are
related. For example, evaluators will have to address trade-offs like latency versus
bandwidth usage.

The objective of this benchmark is to show the implementation of a hands-on experiment
to collect data for the evaluation of middleware as a part of PECA. I chose to evaluate
performance as it is the most important quality attribute in the prioritization of the
criteria (see Figure 4.2) and it is relatively easy to measure.

To narrow the experiment even further I only measured latency. The performance of all
the communication protocol implementations should be measured depending on the
requirements of the organization. I found that the latency of the one-to-one

Página 60 de 110

Evaluation of distributed-system technologies for ALMA Common Software

communication protocol implementations are especially interesting to evaluate because
there are two CTA requirements which fulfillment are affected by this metric [4, Sec. 2.5]:

● B-ACTL-2210​: Command delivery shall be reliable, i.e., commands must
always be acknowledged. For actions requiring a significant amount of
time, the system must display information that the action is on-going. The
maximum time for acknowledgement or display of progress information is
2 seconds​.

● B-ACTL-2280​: The delay between observations due to control software
overhead must be ​< 10 s​.

One-to-one communication protocols are used primarily for the control of devices (i.e.,
command delivery) so I measured latency as the the amount of time it takes to invoke a
two-way operation on a server and receive the results of the operation [48], also known
as Round-Trip-Time (RTT). The result might be an acknowledgement or return values.

Even though this is a fairly simple latency benchmarking, emphasis was placed on the
correctness of the implementation. Practitioners often and unintentionally commit
common mistakes when they implement their benchmarkings [78]. Below, the setup of
the experiment and the results are presented. Section 5.5 provides some
recommendations to avoid common mistakes in middleware benchmarking and how I
tailored this particular experiment to avoid these mistakes.

Test setup

The test were executed in a closed and cabled client/server setup (see Figure 4.6)
consisting in two hosts linked by a switch through an Ethernet connection. Even though
this is a simple experiment which can be extended, it is still relevant due to the control
hierarchy of ACTL described by Krugüer and Neppert [79] in which all the components can
only be controlled by one component at the same time (control tree).

Figure 4.6: Setup of the benchmark.
Source: Elaborated by the author.

Both the client and the server application were executed in a separate HUAWEI
FusionServer RH2288 V3. They supports up to two Intel® Xeon® E5-2600 v3 series
processors. Each processor supports up to 18 cores. They have 24 memory slots 24 for
DDR4 RDIMMs or LRDIMMs with a maximum memory capacity of 1.5 TB.

The ACTL team [15, Tab. 3.2] described the CTA topology, including the “ethernet lines
connecting a telescope with the control building and the array-level trigger.” Specifically

Página 61 de 110

Evaluation of distributed-system technologies for ALMA Common Software

they propose a 1 Gbit/s Ethernet connection for slow control and a another one for the
telescope drive system. Therefore I used a Huawei Quidway S5700-48TP-PWR-SI switch
with a 1 Gbit/s Ethernet connection to link the two hosts.

Regarding the software, the test was performed using orVit 3.6 virtual machines with
CentOS 7 operating system like the current implementations of ACS. The virtual machines
were provided with 1 core and 1GB of RAM each.

In [79] the ACTL software architecture is described including the software components
that are involved in the command delivery. Figure 4.7 shows a simplified ACTL command
flow with the most representative components of the distributed system.

Figure 4.7: Simplified main command flow in ACTL.
Source: Elaborated by the author.

In a meeting with some members of the ACTL team I could obtain more updated
information about the implementation of these components. The scheduler was
programed using C++, the GUIs backend is Python based, OPS components are mainly
made in Java and Python, and slow control components are implemented in Java and C++.
The most representative scenarios (i.e., which are expected to occur at a higher
frequency) are the following:

● A Java client controls a Java server.
● A Java client controls a C++ server.
● A Python client controls a Java server.
● A Python client controls a C++ server.

These scenarios are further confirmed by the current telescope prototypes such as the
SST-1M in which the ACS control related components are built in Java or Python and C++ is
used only for data acquisition [20]. Similarly in the ASTRI SST-M2 prototype almost all ACS

Página 62 de 110

Evaluation of distributed-system technologies for ALMA Common Software

components are in Java [80]. The graphical user interface prototype for the CTA operator
also confirms our assumptions [81].

For testing these interactions the latest stable release of each middleware (at the moment
of the experiment) was installed in the virtual machines:

● JacORB 3.9
● OmniOrb 4.2.2
● TAO 2.4.6
● ICE 3.7
● libzmq 4.2.3 (C++ and Python)
● jeromq 0.4.3 (Java)
● Protocol Buffers v3.5.0
● EPICS v4.6

In the meeting with some CTA experts we had the opportunity to talk about the general
structure of the commands. ACS is currently based on CORBA, so it is not a surprise that
commands are sent as a procedure with their arguments in RPC-like communications.
More interesting are the types of arguments commonly sent in the ACTL control system,
which are often basic types (e.g., integers, strings and floats) and data structures
composed by those types. Nevertheless the commands are often light messages. For
these reasons in this experiment the client-processes invoked procedures with an a
structure as the only parameter. The structure itself contained variables of common
native types (i.e., integer, single-precision floating-point, double-precision floating-point,
Boolean and string).

Benchmarking results

In this section I show the results of the latency benchmarking. For clarity the results are
expressed in terms of interactions (commands) per second. The reader might notice that
there is not an ultimate best candidate for all the scenarios. Also for the interactions that
involve Java the latency at runtime is around half the latency at warmup time (see Figures
4.8, 4.9 and 4.11) while in the only non-Java interaction the runtime and warmup latency
are virtually the same (see Figure 4.10).

Ice has the lowest latency at runtime for the non-Python scenarios. During warmup it has
an average speed when we compare it to the other candidates. On the other hand
ZeroMQ with Protocol Buffers proved to be the slowest of all the candidates in every
scenario at runtime and warmup. This might be explained by the fact that ZeroMQ was
designed to be used for asynchronous communication and it relies in batched messages
for increasing performance. Some tests were made to check that the bottleneck of
performance was in ZeroMQ and not in the use of Protocol Buffers which is an easily
replaceable serialization library. Nevertheless, in a synchronous use case ZeroMQ proved
to be relatively very slow even while sending empty messages.

EPICS was the fastest at warmup in all Java related scenarios. Finally, JacORB seems to be
slow if we compare it to OmniORBpy and TAO. The JacORB client to JacORB server

Página 63 de 110

Evaluation of distributed-system technologies for ALMA Common Software

interaction was the worst performance of CORBA. When we replace JacORB either in the
client or the server side an improvement in latency is detected. CORBA has the best
performance in the Python scenarios, completely out-matching its competitors with the
OmniORBpy to TAO interaction. This shows how some ORB developers overcame some of
the problems of the past and they were able to provide high performance ORBs.

Figure 4.8: Average interactions per second between Java client and Java server.
Source: Elaborated by the author.

Figure 4.9: Average interactions per second between Python client and Java server.
Source: Elaborated by the author.

Página 64 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 4.10: Average interactions per second between Python client and C++ server.
Source: Elaborated by the author.

Figure 4.11: Average interactions per second between Java client and C++ server.
Source: Elaborated by the author.

Página 65 de 110

Evaluation of distributed-system technologies for ALMA Common Software

4.4 Analysing the data

At this point PECA users have gathered a lot of quantitative and qualitative data. If this
data is going to help the decisions makers to choose the more fitting technology then the
first task in this step should be consolidate the data into useful information. The
evaluators should be aware that after consolidating the data we lose some details in favor
to easier understanding and “two very different products can appear to be virtually
identical” in terms of fitness [16, Sec. 5.1]. Even though I followed a mathematical
approach, the reader should understand that consolidating the data will not generate
unquestionable facts (e.g., middleware A is better than B) because the procedure is based
on data and judgment [16].

4.4.1 Picking an AHP approach

As pairwise comparisons from AHP were used to prioritize the evaluation criteria its seems
natural to reuse the same technique to consolidate the data. The analytic hierarchy
process provides two basic approaches to do this consolidation [36]:

● Absolute measurement: the evaluators use pairwise comparisons to create scales
for each evaluation attribute (i.e., for each leaf node in Figure 4.2). Then the data
collected about the candidates is translated using these new scales, generating a
local score for each evaluation attribute.

● Relative measurement: instead of creating a scale for each criterion, the evaluators
use pairwise comparisons to calculate de local scores of each candidate directly.

These local scores are a new representation of the quantitative and qualitative data
collected in the previous step. After the local scores of the middleware candidates are
generated AHP uses weighted aggregation to consolidate them into a global score of
fitness in a ratio scale. Finally we can generate a ranking of the alternatives by only
considering their global score.

Following the guidelines described in Section 5.6, I choose the relative measurement
approach to consolidate the collected data. This approach is very similar to the
prioritization of the criteria in Section 4.2.6. For each evaluation attribute the evaluators
make pairwise comparisons about the alternatives by asking the following questions:
“Which of the two candidates has the property or meets the criterion more? How much
more?” [36, Sec. 1.3].

4.4.2 Consolidating the latency data

Understanding the data

In an attempt of making a relevant benchmarking I customized it to reflect the system
while still maintaining its simplicity. If we go back to the ​Collecting the data step (see
Section 4.3.3), we can see that even with a simple latency benchmarking several results
can be obtained. I tested the latency of the communication between clients and servers
implemented in three different languages (Java, Python and C++). For each relevant
combination of client and server I measured the warmup and runtime latency

Página 66 de 110

Evaluation of distributed-system technologies for ALMA Common Software

independently. Which of those results should we use? One might argue that an average of
all the results should be used to compare the candidates. Another one might say that,
because Java is the main development language [79], only the Java client and server
interactions should be used to compare the alternatives. Furthermore, Should we
consider the warm up latency or the runtime latency?

Warmup performance is not very important if the clients and servers are long lived
processes. The ACS components can be created at the beginning of the night and run for
several hours until they are not longer needed for the observations. In this case warmup
latency seems to be irrelevant. Yet in the scenario where a component fails the control
and supervision hierarchy of ACTL should be able to create a replacement [79] which
might be affected by reduced performance during the warmup phase. If ACS is reliable
enough the components should be mainly running with runtime performance.

For simplicity I continued the evaluation process considering only the Java-to-Java
scenario with runtime performance (see Figure 4.9) to show the consolidation of data. The
benchmark results are included in Table 4.12.

Table 4.12: Latency at runtime between a Java client and a Java server.
Source: Elaborated by the author.

Technology Interactions per second (Runtime)

Ice 7464

ZeroMQ 5709

EPICS 6777

CORBA 5833

Making pairwise comparisons

To make the pairwise comparisons the evaluators have to answer the previously
mentioned questions: Which of the two candidates meets the latency criterion more?
How much more? Due to the fact that latency is a quantifiable criterion measured using a
ratio scale it may be tempting to emit the judgments by using the measured values
directly to answer these questions like is shown in Table 4.13.

Even though this may appear to be objectively true, it is not. We should remember that
fitness is always based on judgment. By reviewing the ACTL requirements, we might make
better judgements about the fitness of each technology regarding the latency criterion [4,
Sec. 2.5]:

● B-ACTL-2210​: Command delivery shall be reliable, i.e., commands must
always be acknowledged. For actions requiring a significant amount of
time, the system must display information that the action is on-going. The
maximum time for acknowledgement or display of progress information is
2 seconds.

Página 67 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● B-ACTL-2280​: The delay between observations due to control software
overhead must be < 10 s.

Table 4.13: Pairwise comparisons regarding latency using a ratio scale directly.
Source: Elaborated by the author.

PC #1 Ice 1.307 ZeroMQ 1

Ice latency: 7464 interactions per second.
ZeroMQ latency: 5709 interactions per second.
Ice meets the criterion 1.307 times better than ZeroMQ.

PC #2 Ice 1.101 EPICS 1

Ice latency: 7464 interactions per second.
EPICS latency: 6777 interaction per second.
Ice meets the criterion 1.101 times better than EPICS.

PC #3 Ice 1.280 CORBA 1

Ice latency: 7464 interactions per second.
CORBA latency: 5833 interactions per second.
Ice meets the criterion 1.280 times better than CORBA.

PC #4 ZeroMQ 1 EPICS 1.187

ZeroMQ latency: 5709 interactions per second.
EPICS latency: 6777 interaction per second.
EPICS meets the criterion 1.187 times better than ZeroMQ.

PC #5 ZeroMQ 1 CORBA 1.022

ZeroMQ latency: 5709 interactions per second.
CORBA latency: 5833 interactions per second.
CORBA meets the criterion 1.022 times better than ZeroMQ.

PC #6 EPICS 1.162 CORBA 1

EPICS latency: 6777 interaction per second.
CORBA latency: 5833 interactions per second.
EPICS meets the criterion 1.162 times better than CORBA.

To fulfill the first requirement the time for acknowledgement has to be equal or less than
two seconds. We can break down the acknowledgement time into application time (when
the system do application related work) and communication time (when the middleware
transport the all the requests and responses required to execute a command). All four
candidates can enable over 5000 request-response interactions per second which means
that they need less than 0.0002 seconds for each interaction. Hypothetically, someone
could argue that over 5000 interactions per second are good enough and incrementing
the speed of the middleware further is not important for the system or it is much less
important than optimizing the application code.

A similar thing happens with the second requirement. The control software overhead
includes all the transport and executions of commands that are required for starting a
new observation in the night. How many commands should be transported and executed
between any two observations? This can only be answered with absolute certainty by
executing the whole system using each candidate which is infeasible. There is a trade-off
between a realistic test or experiment and its cost. Here is when expert knowledge comes
in handy. Expert in distributed systems can emit judgements about how fit is each

Página 68 de 110

Evaluation of distributed-system technologies for ALMA Common Software

technology based on the results obtained in a limited latency benchmarking. Let's suppose
that the experts of the team determine that any middleware that enable over 5000
interactions per seconds is excellent and if a candidate is faster than that it doesn’t make
any significant difference for the ACTL system. In this hypothetical scenario the judgments
using the Saaty scale are described in Table 4.14.

Table 4.14: Pairwise comparisons regarding latency using expert knowledge (hypothetical case).
Source: Elaborated by the author.

PC #1 Ice 1 ZeroMQ 1

Ice and ZeroMQ enable over 5000 interactions per second.
Ice is equally as preferable as ZeroMQ.

PC #2 Ice 1 EPICS 1

Ice and EPICS enable over 5000 interactions per second.
Ice is equally as preferable as EPICS.

PC #3 Ice 1 CORBA 1

Ice and CORBA enable over 5000 interactions per second.
Ice is equally as preferable as CORBA.

PC #4 ZeroMQ 1 EPICS 1

ZeroMQ and EPICS enable over 5000 interactions per second.
ZeroMQ is equally as preferable as EPICS.

PC #5 ZeroMQ 1 CORBA 1

ZeroMQ and CORBA enable over 5000 interactions per second.
ZeroMQ is equally as preferable as CORBA.

PC #6 EPICS 1 CORBA 1

EPICS and CORBA enable over 5000 interactions per second.
EPICS is equally as preferable as CORBA.

Calculating the latency local scores

We can use the Super Decisions v3 software to process the judgments in both Table 4.13
and Table 4.14. The latency local scores generated by the software are shown in Table
4.15.

Table 4.15: Latency scores derived from different judgements.
Source: Elaborated by the author.

 Scores using quantifiable data directly Scores using the Saaty scale and
expert knowledge (hypothetical)

Technology Normal mode Ideal mode Normal mode Ideal mode

Ice 0.28947 1.00000 0.25000 1.00000

ZeroMQ 0.22143 0.76496 0.25000 1.00000

EPICS 0.26288 0.90813 0.25000 1.00000

CORBA 0.22623 0.78152 0.25000 1.00000

Página 69 de 110

Evaluation of distributed-system technologies for ALMA Common Software

The results in Table 4.15 prove that even if we follow a mathematical approach for
generating scores, it is not an objective task. From the same data collected in the previous
PECA step I generated different scores and both approaches have an inconsistency ratio of
cero. This is why the evaluation team should not be composed by just the junior engineer.
It also needs the support of senior engineers with intimate knowledge about the system
which is especially true when we are dealing with complex distributed systems.

4.4.3 Consolidating the default coupling data

Using the quantifiable data directly to generate the local scores is often ill advised and
should be previously validated as an adequate approach for comparing the candidates
regarding a particular evaluation attribute. Moreover this approach is not feasible when
we are dealing with intangible criteria and qualitative data. In this section I analyze the
data about the coupling introduced to the distributed system by the different middleware
alternatives.

Relationship between coupling and software dependencies

As was already described in Section 4.3.2 we can understand the concept of coupling as
the amount of knowledge we need about one module to be able to understand another
module [76]. Knowledge is not straightforwardly quantifiable and there is not a standard
way to measure it in the context of distributed systems. Fortunately Wijegunaratne and
Fernandez [50] present a practical framework for application architects and designers to
assist them on making effective decisions regarding the system design and middleware
selection. The framework points out which pieces of information are relevant to
determine the coupling of a distributed system and, more importantly for us, the default
coupling (i.e., coupling induced by the middleware).

Achieving the lowest possible coupling in distributed systems is generally considered a
desirable goal because it is associated with a reduced development and maintenance cost,
but this is not strictly correct. The way that the organizations implements their processes
influences the design of software components, generating dependencies between them.
These dependencies are “in the realm of the requirement” while coupling is a property of
the software implementation that satisfies those requirements [50, p. 124].
Wijegunaratne and Fernandez describe two types of software dependencies [50]:

● Processing dependency
○ Simple processing dependency: when a component needs some tasks be

performed remotely by another component to able continue and finish its
own processing.

○ Transactional dependency: likewise simple processing, transactional
dependency occurs when a component needs some tasks be performed
remotely, but this time by a set of components. Furthermore, all these
tasks are considered by the requester “a single logical unit of work, to be
carried in an all or nothing fashion” [50, p. 117].

● Informational dependency: when a component needs to send some information to
one or more remote components without expecting that it will be processed. This

Página 70 de 110

Evaluation of distributed-system technologies for ALMA Common Software

typically occur in response to an event, changes in existing information or
generation of new information.

Each of these dependencies can be implemented only by a set of suitable middleware
interface types [50] which introduce a part of the default coupling in the system. This fact
allows us to understand that there is an appropriate level of coupling associated to each
type of software dependency and the goal of the implementation should be to achieve the
lowest appropriate level. Using middleware interfaces with a lower than the appropriate
coupling leads to integrity problems. Processing dependencies require interface types
that introduce more coupling than informational dependencies. In a similar way
implementing transactional dependencies require interfaces types with higher coupling
than those required for implementing non-transactional dependencies [50].

Software dependencies of CTA

The way CTA defined their processes (e.g., scheduling and executing observations) is the
source of the software dependencies required to implement these processes. After we
find the software dependencies we can start to analyze if the middleware candidates
provide the required interfaces and if the coupling of the system can be minimized with
the available options to reach lowest appropriate level of coupling. Specifically, two types
of software dependencies were detected:

● ACTL simple processing dependencies: they are primarily derived from the control
system requirements. Specifically, for performing observations (e.g., a fixed time
observation of a target), ACTL should be able to execute a sequence of actions.
These actions are translated in a ordered sequence of commands that has to be
executed remotely in the software components controlling the telescopes and
auxiliary devices. The components orchestrating these sequences can’t complete
their work or continue their processing until all the commanded components do
their work and acknowledge.

● ACTL informational dependencies: they are primarily derived from the monitoring
system. Software components in charge of devices periodically send data to the
monitoring system so it can be archived and used for other components such as
the scheduler, the RTA and the operator UIs. This data might be alarms, errors,
warnings or status data.

After identifying the software dependencies we have an idea of what is the appropriate
level of coupling that we are looking for the implementation of each dependency by
following the guidelines presented in [50]. Then, with the the data about the middleware
interfaces that is collected in the third step of PECA, we can choose the best middleware
interfaces to implement the software dependencies.

Summary of Ice default coupling data

Ice provides a ​static invocation interface which covers the simple processing dependency
pretty well. With ​synchronous static invocations a serie of commands can be executed in

Página 71 de 110

Evaluation of distributed-system technologies for ALMA Common Software

order, enabling an easy passage of control. On the other hand Ice also provides
asynchronous static invocation which can be used when commands require a considerable
amount of time to be executed remotely and a blocked requester component is
undesirable. Furthermore Ice provides a ​dynamic invocation interface which only partially
implements dynamic communication (i.e., it doesn’t support dynamic discovery of remote
interfaces). The coupling-related data collected about these interfaces is summarized as
below:

● Ice can enable an easy passage of control with the static invocation interface
(desirable).

● Ice stores administrative information centrally in the infrastructure (middleware)
by providing its own location service (i.e., IceGrid or IceDiscovery).

● Both interfaces together provide synchronous, asynchronous and static
communication.

● The clients bind early to the form of the servers, at development time, with both
static and dynamic invocation interfaces due to the use of the interface definition
language SLICE. The clients never bind to the implementation of the servers
because Ice provides several interoperable language bindings, nevertheless the
dynamic invocation interface does not support Python. The Ice location services
allow the clients to bind late to the occurence of a server, at runtime.

For satisfying the informational dependency Ice provides a Pub-Sub event distribution
service: ​IceStorm​. This service can receive data from monitored ACTL components and
distribute it to the interested consumers. The coupling-related data collected about
IceStorm is summarized as below:

● IceStorm makes the passage of control difficult (desirable).
● Ice stores administrative information centrally in the infrastructure (middleware)

by providing its own location service (i.e., IceGrid or IceDiscovery).
● IceStorm provides asynchronous, available and static communication.
● The publishers using IceStorm bind early to the form of subscribers because they

use a topic (SLICE) interface to agree about the message format at development
time. The publishers never bind to the implementation of the subscribers because
Ice provides several interoperable language bindings. By using the Ice location
services, both publishers and subscribers can bind late to the occurrence of the
IceStorm service, at runtime, but IceStorm does not persist messages so they have
to be simultaneously available to be able to communicate.

Summary of ZeroMQ default coupling data

ZeroMQ provides the Request-Reply pattern sockets which can be used to fulfill the simple
processing dependencies of ACTL. These sockets provide one-to-one communications
needed by a client to request a server to do some job. The coupling-related data collected
about these socket is summarized as below:

Página 72 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● ZeroMQ makes the passage of control difficult because it is an inherently
asynchronous communication library (undesirable).

● By default ZeroMQ requires that the administrative information has to be
hardcoded in the application. For this reason the information is distributed across
the components of the distributed system.

● The Request-Reply pattern sockets provide asynchronous and static
communication.

● The clients bind early to the form of the servers by using Protocol Buffers to agree
about the message format, at development time. The clients never bind to the
implementation of the servers because ZeroMQ and Protocol Buffers provide
several interoperable language bindings. ZeroMQ doesn’t provide any discovery
service or location service out of the box, so the clients bind early to occurrence of
the servers, at development time.

ZeroMQ arguably has been designed for satisfying informational dependencies with its
Publish-Subscribe pattern sockets​. Like most of the message oriented middleware
products it provides great flexibility for many-to-many communications, but does not
force the developers to use a message broker. The coupling-related data collected about
these sockets is summarized as below:

● Publish-Subscribe pattern sockets make the passage of control difficult (desirable).
● By default ZeroMQ requires that the administrative information has to be

hardcoded in the application. For this reason the information is distributed across
the components of the distributed system.

● The Publish-Subscribe pattern sockets provide asynchronous, static, available (with
proxies) and non-available (with message broker) communication.

● The publishers and subscribers using Protocol Buffers have to agree early about
the message format, at development time. The publishers and subscribers never
bind to the implementation of the proxies or the message broker, because
ZeroMQ and Protocol Buffers provide several interoperable language bindings.
ZeroMQ doesn’t provide any discovery service or location service out of the box,
so the publishers and subscribers bind early to occurrence of the proxies or the
message broker, at development time.

Summary of EPICS default coupling data

EPICS provides synchronous and asynchronous ​RPC interfaces which can be used to satisfy
the simple processing dependency of ACTL. Clients can invoke remote functionality
provided in the form of services. The coupling-related data collected about these
interfaces is summarized as below:

● EPICS enable an easy passage of control with its synchronous RPC interface
(desirable).

Página 73 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● EPICS currently only support UDP broadcast as its name resolution method for the
pvAccess protocol. This means that the administrative information is not
centralized, but it can be discovered at runtime.

● Both RPC interfaces together provide synchronous, asynchronous and static
communication.

● The clients bind early to the form of the servers, at development time because the
service name and parameters have to be be known at development time. The
clients never bind to the implementation of the servers because EPICS provide
interoperable implementations for C++, Java and Python. The UDP broadcast
mechanism allows the clients to bind late to the occurence of a server, at runtime.

For the informational dependencies of ACTL, EPICS provides a ​Monitor interface which
implement a publish-subscribe pattern. The coupling-related data collected about this
interface is summarized as below:

● The Monitor interface does not allow the passage of control (desirable).
● EPICS relies on UDP broadcast as its default name resolution method. This means

that the administrative information is not centralized, but it can be discovered at
runtime.

● The Monitoring interface provides asynchronous, available, static and dynamic
communication.

● EPICS never binds to form, clients can retrieve and use the introspection interface
of the server to create a Monitor at runtime. It never binds to implementation due
to the compatibility between the Java and C++ implementation plus its python
wrapper (pvaPy). EPICS binds to occurrence late at runtime when the client uses
UDP broadcast to find the channels endpoints.

Summary of CORBA default coupling data

The CORBA implementations used by ACS provide three interfaces types that are suitable
for satisfying the simple processing dependencies of ACTL: ​static invocation​, ​dynamic
invocation and ​asynchronous method invocation​. The coupling-related data collected
about these interfaces is summarized as below:

● CORBA enables easy passage of control with the static invocation interface
(desirable).

● CORBA stores administrative information centrally in the infrastructure
(middleware) by providing its own location service (i.e., CORBA Naming Service).

● The three interfaces together provide synchronous, asynchronous, static and
dynamic communication.

● The clients can bind late to the form of the servers, at runtime, by using the
dynamic invocation interface. The clients never bind to the implementation of the
servers because JacORB, TAO and OmniORBpy can interoperate using IIOP
protocol. The CORBA Naming Service allow the clients to bind late to the

Página 74 de 110

Evaluation of distributed-system technologies for ALMA Common Software

occurence of a server, at runtime.

CORBA implementations provide a ​Notification Service which is suitable for satisfying the
informational dependencies of ACTL. Each CORBA implementation considered in this
evaluation provides its own notification service. ACS currently uses the TAO Notification
Service. The coupling-related data collected about the CORBA Notification Service is
summarized as below:

● The CORBA Notification Service makes the passage of control difficult (desirable).
● CORBA stores administrative information centrally in the infrastructure

(middleware) by providing its own location service (i.e., CORBA Naming Service).
● The CORBA notification service provides asynchronous, available and static

communication.
● The components rely on CORBA stub module generated by the IDL compiler to

publish the data to the Notification Service so the binding to form occurs early at
development time. They never bind to the implementation of the TAO Notification
Service because it can interoperate with C++, Java and Python components. By
using the CORBA Naming Service, both publishers and subscribers can bind late to
the occurrence of the Notification Service, at runtime, but Neither TAO nor JacORB
Notification Service implement the QoS properties required for guaranteed
delivery so publishers and subscribers have to be simultaneously available to be
able to communicate.

Making pairwise comparisons

By analyzing the data about the interfaces (summarized above) we are able to make
pairwise comparisons between the middleware candidates regarding their default
coupling using the Saaty scale. Due to the high amount of data considered in each
judgment I show the judgments rationale in a very condensed format in Table 4.16.

Table 4.16: Pairwise comparisons regarding default coupling using the Fundamental scale.
Source: Elaborated by the author.

Pairwise comparison #1 Ice (6) ZeroMQ (1)
Simple processing dependencies

Communication types Synchronous and asynchronous Only asynchronous
Administrative info. Centralized in the middleware Distributed in the application
Binding to occurrence During runtime During development time

Informational dependencies

Communication types Available Unavailable (with message broker)
Administrative info. Centralized in the middleware Distributed in the application
Binding to occurrence During runtime During development time

Ice is strongly to very strongly more preferable than ZeroMQ regarding default coupling.

Página 75 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Table 4.16: Continued

Pairwise comparison #2 Ice (3) EPICS (1)
Simple processing dependencies

Communication types Dynamic partially supported Only static
Administrative info. Centralized in the middleware Distributed in the middleware

Informational dependencies
Communication types Only Static Dynamic and static
Administrative info. Centralized in the middleware Distributed in the middleware
Binding to form During development time During runtime

Ice is moderately more preferable than EPICS regarding default coupling.
Pairwise comparison #3 Ice (1) CORBA (1)

Simple processing dependencies
Communication types Dynamic partially supported Dynamic fully supported (but

complex)
Ice is equally preferable as CORBA regarding default coupling.

Pairwise comparison #4 ZeroMQ (1) EPICS (3)
Simple processing dependencies

Communication types Only asynchronous Synchronous and asynchronous
Administrative info. Distributed in the application Distributed in the middleware
Binding to occurrence During development time During runtime

Informational dependencies
Communication types Unavailable and static Available and dynamic
Administrative info. Distributed in the application Distributed in the middleware
Binding to form During development time During runtime
Binding to occurrence During development time During runtime

EPICS is moderately more preferable than ZeroMQ regarding default coupling
Pairwise comparison #5 ZeroMQ (1) CORBA (6)

Simple processing dependencies
Communication types Only asynchronous and static Synchronous, asynchronous, static,

dynamic
Administrative info. Distributed in the application Centralized in the middleware
Binding to occurrence During development time During runtime

Informational dependencies
Communication types Unavailable (with message broker) Available
Administrative info. Distributed in the application Centralized in the middleware
Binding to occurrence During development time During runtime

CORBA is strongly to very strongly more preferable than ZeroMQ regarding default coupling.
Pairwise comparison #6 EPICS (1) CORBA (3)

Simple processing dependencies
Communication types Only static Static and dynamic
Administrative info. Distributed in the middleware Centralized in the middleware
Binding to form During development time During runtime

Informational dependencies
Communication types Dynamic and static Only Static
Administrative info. Distributed in the middleware Centralized in the middleware
Binding to form During runtime During development time

CORBA is moderately more preferable than EPICS regarding default coupling.

Página 76 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Generating the default coupling local scores

By introducing the judgments of the pairwise comparisons in an AHP software package we
can generate local scores for each candidate regarding its default coupling which then can
be easily aggregated with the rest (e.g., with the latency local scores). Table 4.17 shows
the local scores in normal mode and ideal mode. These scores were generated using the
software Super Decisions v3.

Table 4.17: Default coupling local scores derived from judgement.
Source: Elaborated by the author.

 Scores using the Saaty scale and expert knowledge

Technology Normal mode Ideal mode

Ice 0.39647 1.00000

ZeroMQ 0.05998 0.15129

EPICS 0.14708 0.37096

CORBA 0.39647 1.00000

4.4.4 Generating the global scores (weighted aggregation)

Once the local scores of all the evaluation attributes are calculated, it is time to
consolidate them using weighted aggregation. The global score of each candidate is the
sum of each evaluation attribute local score multiplied by its global priority. The global
priority of an evaluation attribute is obtained by weighting (multiplying) its local priority
by the priority of all its ancestors in the tree representation of the hierarchy. The local
priorities were obtained in the ​Establishing the criteria​ step of PECA.

Nonetheless I only collected data about two evaluation attributes. Without also collecting
the required data about the other 42 evaluation attributes we are unable to use the
model shown in Figure 4.2 to generate the global scores of the middleware alternatives.
For this reason I propose an oversimplified model presented in Figure 4.12 to show the
reader how to properly consolidate quantitative (latency) and qualitative (default
coupling) data. The priorities of the criteria in this model are obtained by reusing the
paired comparison between ​Product Quality Characteristic and ​Strategic Concerns from
Table 4.8.

I also made a Super Decisions v3 model for this simplified decomposition. Figure 4.12
shows the local priorities for each criterion. In each level the sum of the local priorities of
the criteria is 1. The global priorities for Latency and Default Coupling are the following:

● Latency global priority = 0.25000 * 1.00000 = 0.25000
● Default Coupling global priority = 0.75000 * 1.00000 = 0.75000

Página 77 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 4.12: Simplification of the full hierarchical decomposition.
Source: Elaborated by the author.

AHP describe two modes for synthesizing the model. What mode should we use? The
same problem with the same criteria might be approached with both modes, it only
depends on what the evaluators are trying to accomplish. If the goal is to choose the
middleware that “stands out” (i.e., dominance is important) then the normal mode (also
known as distributive mode) should be used [51, Sec. 2.7.1]. If the goal is to choose “a
well performing” middleware (i.e., performance is important) then the ideal mode is the
best choice [51, Sec. 2.7.1]. Therefore I used the ideal mode in this evaluation. In [82]
more detailed guidelines for choosing the synthesis mode are provided. Table 4.18
presents the global score of each candidate for our simplified hierarchy. Table 4.19 shows
the ranking of the candidates based on this partial evaluation. The reader should
remember that only 2 of the 44 evaluation attributes were measured so these global
scores must not be used for real decision making.

Table 4.18: Global priorities of the candidates (simplified problem).
Source: Elaborated by the author.

Technology Global Score

Ice 0.25000 * 1.00000 + 0.75000 * 1.00000 = 1.0000000000

ZeroMQ 0.25000 * 0.76496 + 0.75000 * 0.15129 = 0.3047064131

EPICS 0.25000 * 0.90813 + 0.75000 * 0.37096 = 0.5052543648

CORBA 0.25000 * 0.78152 + 0.75000 * 1.00000 = 0.9453800221

Table 4.19: Partial ranking of the candidates.
Source: Elaborated by the author.

Place Technology
First Ice

Second CORBA
Third EPICS

Fourth ZeroMQ

Página 78 de 110

Evaluation of distributed-system technologies for ALMA Common Software

I would like to note that Super Decisions v3, for an unknown reason, does not implement
the ideal mode synthesis as described in this section so the users must manually calculate
the scores as shown in Table 4.18. There are several specialized packages for supporting
AHP such as Expert Choice , Logical Decisions and Make it Rational [83]. Almost all AHP 3 4 5

packages are commercial software, so I could not test them for this dissertation. The ones
with free trials were too limited. Even the classic software for supporting AHP, Expert
Choice, has some errors in its implementation of the ideal mode [82]. I finally choose
Super Decisions v3 because it is free, with good documentation and it is very complete
regarding its features. If the reader remains unconvinced about using Super Decisions v3
then he or she can always use a spreadsheet to do all the necessary calculations for AHP.

In Section 4.2.6 I used the pairwise comparison technique for calculating the priorities of
the criteria. In this section I used it again for consolidating heterogeneous data. The
guidelines of group decisions-making and conflict resolution of Section 5.3 also apply here.
If the reader is interested in this topic I encourage he or she to check the details in
Chapter 8 and Chapter 9 of [84].

4.4.5 Analyse the consolidated data

Comella-Dorda et al. [16, Sec. 5.3.1] describe the analysis as a “creative task” that
requires “simply sound and careful reasoning”. In this section I use some techniques
recommended by them that may help us to analyze the data that was consolidate into
useful information in a more effective way.

Sensitivity analysis

The sensitivity analysis shows how potential changes on the priorities generated in
previous steps, specially the priorities of the evaluation criteria, might alter the global
scores of the middleware candidates. This technique allows the evaluators to determine
the robustness of the ranking obtained in Section 4.4.4 and the criteria that drove the
ranking [84]. Furthermore, by executing a sensitivity analysis the evaluators can handle
the conflicting interests of stakeholders, changes in system requirements, changes in
maintenance strategies and potential expert bias [16].

Super Decisions v3 only supports sensitivity analysis for the distributive mode synthesis. A
workaround for this problem might be to use the copy to clipboard function to collect the
ideal local score of each evaluation attribute and paste them on a spreadsheet. I used the
free Google Sheet application for making my own sensitivity analysis. Figure 4.13 shows 6

how the global score of each middleware alternative varies when we adjust the priority of
the Product Quality Characteristic criterion.

3 ​https://expertchoice.com/
4 ​http://www.logicaldecisionsshop.com/catalog/
5 ​http://makeitrational.com/pricing
6 ​https://www.google.com/sheets/about/

Página 79 de 110

https://expertchoice.com/
http://www.logicaldecisionsshop.com/catalog/
http://makeitrational.com/pricing
https://www.google.com/sheets/about/

Evaluation of distributed-system technologies for ALMA Common Software

Figure 4.13: Sensitivity analysis for the simplified hierarchy.
Source: Elaborated by the author.

As the reader might notice Ice has a constant global score of 1 (the best possible score)
regardless the priorities of the criteria. This only happens in the exceptional case when a
candidate is the best regarding every criteria. Now that we have a visual representation,
What should we do with it? Several questions can be answered by a sensitivity analysis.
For example in [84] the author propose two:

● What happens when all the criteria have the same weight?
● What weight is needed for the Product Quality Characteristics criterion to lead to a

tie in the overall scores of the alternatives?

First of all we note that the original ranking (see Table 4.19) for our test case is shown in
Figure 4.13 when the Product Quality Characteristics priority is left unchanged (0.25). This
ranking is preserved when we adjust it to 0.5 (i.e., when the two criteria have the same
weight). Moreover Ice is the the preferred alternative regardless the prioritization of the
criteria. CORBA can tie the score of Ice in the hypothetical case in which ​Product Quality
Characteristics​, which I simplistically measured as latency, do not matter (i.e., its local
priority is 0). When the importance of the performance of the middleware start to
increase the global score of CORBA start to decrease to the point in which EPICS surpases
CORBA in the ranking and it position itself at second place, when the priority of the
Product Quality Characteristic is around 0.84.

From this analysis we can say that, for my oversimplified test case represented in Figure
4.12, Ice is the clear best choice because, regardless the stakeholders interests, potential
changes on system requirements (and maintenance strategies) or expert bias in the

Página 80 de 110

Evaluation of distributed-system technologies for ALMA Common Software

prioritization of the criteria, Ice always has the higher global score. We arrive to this
conclusion because, in order to be able to show the execution of PECA, I reduced the
complexity of the problem too much (i.e., only two evaluation attributes were
considered). It is to be expected that when we use a hierarchy that represent the real
system, like the one I proposed in Figure 4.2, the analysis will be more complex and
accurate.

So far I only introduced the sensitivity analysis for the criteria. In some rare cases the
evaluators can also do a sensitivity analysis about the local scores of the alternatives
regarding certain evaluation attributes. This can be especially useful when the evaluators
believe that the data collected for certain attributes is not very trustworthy or it has low
quality (e.g., latency results from a benchmarking conducted by vendor). In this iteration a
sensitivity analysis about latency may be useful to also consider the results of the
scenarios that were discarded in the consolidation of the latency data (see Section 4.4.2).

Gap analysis

This technique organize the data obtained about each criterion in a visual representation
that enables the evaluators to do a more straightforward analysis by comparing the
candidates gaps to fulfill the criteria. This representation consist in a matrix whose cells
describe the gap (see Table 4.20).

Table 4.20: Template of gap analysis matrix for four candidates and two criteria.
Source: [16].

Criteria Products

P1 P2 P3 P4

C1

C2

We might describe the gaps in different ways. For instance the evaluators can use Boolean
values (i.e., true or false) to fill the matrix or use the local scores of the evaluation
attributes that were obtained in Section 4.4.2 and Section 4.4.3. The most useful way to
build the gap analysis matrix is to fill the cells with a description of the respective gap so
then we can determine the cost of fulfillment of that gap more easily.

Table 4.21 shows a gap analysis matrix with only default coupling as a criterion. As I
mentioned in Section 4.4.3, this criterion is related to the need of building and maintain a
complex distributed system with limited manpower. To accomplish this it is desirable that
the middleware introduce the lowest appropriate coupling to the system, so the gaps
described in the matrix are the missing features that make the default coupling of the

Página 81 de 110

Evaluation of distributed-system technologies for ALMA Common Software

middleware candidates diverge from the appropriate level. “Overabundance of features”
can also generate a gap when it is undesirable to expose these additional characteristics
to certain users and the features “must be hidden” [16, Sec. 5.3.3].

Table 4.21: Example of a gap analysis matrix with only one criterion.
Source: Adapted from [16].

Criteria Products

Ice ZeroMQ EPICS CORBA

Default
coupling

Limited dynamic
communication

support

No unavailable
communication

(Icestorm)

No synchronous
communication

Administrative
information at

application level

Distributed
administrative

information

No dynamic
communication

Distributed
administrative

information

No dynamic
communication

(RPC)

No unavailable
communication

(Monitor interface)

No dynamic
communication
(Event service)

No unavailable
communication.
(Event service)

In this PECA iteration all the products had a gap to be filled regarding their default
coupling, but this is not always the case. Some middleware candidates might be a
complete solution regarding some criteria so their cost of fulfillment for those criteria is
zero.

Cost of fulfillment

After generating the gap matrix with all the relevant criteria the evaluators have a good
idea of what is missing to fulfill the requirements of the system if they choose any one of
the candidates. Now it is time to estimate how much will it cost to close all the gaps for
each product. The cost might be expressed in various forms such as dollars, time or shifted
risk. The approach proposed by Comella-Dorda et al. [16, Sec. 5.3.3] for determining the
cost of fulfillment for each candidate has the following steps:

● Step 1: Identify each gap.
● Step 2: For each gap, determine

○ one or more fulfillment strategies (e.g., negotiate with the
vendor, modify other system components, add custom code,
negotiate requirements)

○ the cost to implement each strategy (costs include
architecture/design, maintenance, process changes, etc.)

Página 82 de 110

Evaluation of distributed-system technologies for ALMA Common Software

● Step 3: Select the preferred set of fulfillment strategies.

Once the previous steps are done, the evaluators can obtain the total cost of fulfillment
associated to each candidate and then select the one with the lowest cost. The execution
of this technique requires a high level of expertise that evaluation teams often do not
have. Consequently the evaluators have to team with experts on architecture, design,
maintenance and business for determining the fulfillment strategies and their respective
costs [16]. Even though I did not have access to these experts, for completeness, I
proposed some fulfillment strategies for ZeroMQ:

● No synchronous communication:
○ Custom implementation of a synchronous communication protocol by the

ACTL team.
○ Integrate ZeroMQ with a middleware product that provides an efficient

synchronous protocol implementation.
○ Use ZeroMQ as it is and manage the risk of having integrity problems

during the development process.
● Administrative information distributed at application level:

○ Custom implementation of a location service to hold the administrative
information.

○ Integrate ZeroMQ with a technology that already solved this problem (e.g.,
Ice and CORBA).

○ Use helper libraries such as ZeroConf [63].
○ Implement an UDP-based discovery protocol [63].

● No dynamic communication:
○ Use Protocol Buffers self-describing messages technique (only for C++ and

Java).
○ Replace Protocol Buffers with another serialization library such as

MessagePack or use JSON when dynamic communication is needed.

Each of these strategies has an associated cost which has to be estimated. Evaluators
should be careful with choosing incompatible fulfillment strategies for different criteria
regarding the same middleware candidate [16].

4.4.6 Making recommendations

As explained by Comella-Dorda et al. [16, Sec. 5.4] this task is about providing all the
necessary information to the decision makers so they are able to “make an informed
decision.” Even when the evaluators can’t recommend any candidate, they have gained
through the evaluation process knowledge and understanding of the system that should
be documented. This knowledge might be used to support architecting, wrapping, testing
and maintenance [16].

The three documents that serve as an output for this iteration of PECA and as an input for
the next one are the Product Dossier, the Evaluation Record and the Summary with
Recommendations whose templates are described in Appendix B, Appendix C and
Appendix D respectively. A detailed description of how to build each document can be

Página 83 de 110

Evaluation of distributed-system technologies for ALMA Common Software

found in [16]. Documentation is often considered a tedious task that practitioners try to
avoid, but this should not be the case. By checking the templates the reader might notice
that, at this point, most of the work has been already done.

In regard to the Product Dossier, it is not necessary to include the full information of all
candidates considered in the evaluation. During the quick assessment I gathered
information about the coarse filters and discarded 12 candidates (see Section 4.3.1). A
summary of this information with a brief explanation about the rejection of these 12
middleware alternatives is enough as a dossier for these candidates. Similarly the first and
the last section of the Evaluation Record can be generated using the information in
Section 4.1. The criteria record can be filled with the criteria generated in Section 4.2.
Since the hierarchical decomposition method described in [35] was used, I found more
intuitive to structure the criteria record as is shown in Table 4.6 for performance criterion.
The information for the result record was generated in Section 4.4.4 and Section 4.4.5.

The final task of PECA is to make and document the Summary of Recommendations (see
Appendix D). The analysis of fitness consolidates the information generated during the
whole evaluation process. Regarding the evaluation deficiencies of the current effort it
should be obvious at this point that a new iteration of PECA, executed by the ACTL team,
is necessary for selecting the most suitable middleware candidate. Even though I am
confident about the results of this iteration regarding the correctness of the
implementation which is key for accomplishing the objective of this dissertation I insist
that, because it was just a partial execution of the process, the results (e.g., the ranking
shown in Table 4.19) must not be used directly for the decision making (i.e., the
middleware selection). I generated a full hierarchical representation of the decision
problem for ACTL, but then only 2 from the 44 evaluation attributes were considered due
to the scope and objectives of this iteration. Furthermore I was unable to use techniques
for collecting data about external metrics (see Section 5.4) due to budget and
infrastructure constraints. During the execution of PECA the evaluation team is very likely
to discover some unexpected facts. For instance some discovered facts in this iteration are
the following:

● ZeroMQ is not the best option for synchronous command execution.
● Ice dynamic invocation only partially supports dynamic communication.
● EPICS UDP broadcast for service discovery may conflict with firewalls.
● Non-Java CORBA implementations are faster than some people might think.
● The criterion ​Multi-language Interoperability obtained a relatively low priority in

this first iteration of PECA after the analysis of the CTA documentation (see Figure
4.2). Nevertheless in a meeting with some CTA experts I learned that the
development teams working in each subsystem of ACTL have strong preferences
for different programming languages, effectively seizing the multi-language
interoperability of ACS.

These documents are just a way of storing the knowledge generated during the evaluation
process in a convenient way so it can be accessed in the future. For example, if after
choosing a product the development team find problems during its integration with the

Página 84 de 110

Evaluation of distributed-system technologies for ALMA Common Software

system, they can review the rationale behind the selection of the product and alternatives
strategies for the use of the product. If the problem couldn't be solved, then the
evaluation team might start new iteration of PECA which is expected to be faster, cheaper
and overly more effective than the previous one. To this end the evaluators are
encouraged to tailor the templates of these documents for preserving and transmitting
their improved understanding of the system in the most effective way possible.

While no meaningful recommendation for selection can be made by analyzing less than
5% of the evaluation attributes, I would like to point out ZeroC Ice as a promising
candidate for further evaluation in a forthcoming iteration of PECA. The rationale for
supporting Ice includes the following points:

● Ice is similar to what already exist. It implements the same communication
paradigm as CORBA. This might be translated into reduced architectural
mismatches and easier learning curve for people already familiar with ACS.

● According to my custom latency benchmarking, the Java binding of Ice is fastest
and Java is arguably the most important programing language for the ACTL team.

● Ice can effectively reduce the development and maintenance effort by introducing
low coupling, providing network transparency and a suit of standard services which
may be used to ease the development of the ACTL system.

● Ice introduces only a little more coupling than CORBA into the system, but it
appears to bring in much less complexity with its simpler API.

● Its documentation and support are very good.
● It appears to have an active community and a mature codebase.
● It can support the high availability and reliability required by ACTL by increasing

the overall fault tolerance of the system with physical redundancy mechanisms
and time redundancy mechanisms. Ice can also replicate its own standard services.

Nonetheless the previous points must be backed up with quality data relevant to the
system context. I took a first step on this direction by measuring latency and default
coupling, but there is much work to do. For this reason I can only recommend to continue
the evaluation.

As was repeatedly explained in this document, the fitness of the software is partially
based on judgment which is not purely objective. This also applies to the generation of the
model to represent the problem. The interested parties might use the full hierarchy of
Figure 4.2 as a starting point, and modify it to reflect the real context of their system. I
built the full hierarchical representation with ACTL needs in mind so CTA can reuse it with
less modifications than any other organization trying to solve the same problem.

Página 85 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 5: SUMMARY OF ADVICES AND RECOMMENDATIONS

This chapter includes several tips that I compiled from the literature that are important or
were especially helpful while executing the evaluation and selection process.

5.1 Forming a good evaluation team

The process described in this dissertation requires an evaluation team with a large range
of skills [16]. This is especially true when we are dealing with complex distributed systems.
Specifically software architects, designers, developers, maintainers, business analysts and
end users are required.

Furthermore, the evaluation team should include some experts on the topics mentioned
above, because junior engineers lack the expertise required to complete certain task of
the process such as creating a polished hierarchical representation of the MCDM problem,
consolidating quantitative data with qualitative data and calculating the ​cost of fulfillment
for each middleware candidate.

Finally, the evaluation team should avoid to bias the results at all cost. To accomplish this
a balance of power is required [16] so no individual member is able to consciously or
unconsciously manipulate the results of the evaluation.

5.2. Choosing the adequate criteria and metrics

Even though I used the hierarchical decomposition process to derive the evaluation
attributes from the from the influencing factors it is important to be conscious about the
fact that the criteria decomposition is by definition a subjective process based in the
knowledge and expertise of the evaluators. We can find the decomposition of some
common criteria in the literature, but no general list of criteria is adequate for all
evaluation contexts and trying to blindly follow one will probably introduce errors of
inclusion and exclusion in the evaluation process. An example of these decompositions are
the ISO and IEEE standards about software quality [47].

Another concern is the choice of metrics for the evaluation criteria. The evaluation
attributes are the criteria that can be measured using some kind of metric to evaluate the
different alternatives of communication middleware. Even though we can measure
performance ​relying only on quantifiable metrics, this is not always the case. For instance
let's consider the ​middleware support to the system extensibility​. The evaluation attribute
(​default coupling​) is a description about the type of interfaces provided by the middleware
[50]. This is all right because we are dealing with a multi-criteria decision making problem
in which intangible criteria might be (and often are) more important than quantifiable
evaluation criteria and thus they have to be included.

Página 86 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Finally regarding the metrics an important lesson was learned from [47] about the
different types of metrics. The ISO standard classify metrics in three types:

● Internal metrics: we use these metrics to measure the intrinsic properties of
non-executable or intermediate software products (e.g., documentation, source
code, etc) during the design and coding phases of the software development
lifecycle. This includes the properties “which can be derived from simulated
behaviour” [47, p. 15].

● External metrics: they allow to measure the software product quality indirectly by
measuring the behaviour of the system that contains it. We can use these metrics
in simulated environments with simulated data during the testing phases of the
software development lifecycle.

● Quality in use metrics: we use these metrics to “measure the extent to which a
product meets the needs of specified users to achieve specified goals with
effectiveness, productivity, safety and satisfaction in a specified context of use”
[47, p. 15]. There may be different types of users with different perspectives which
have to be addressed (e.g., operators and maintainers).

One can argue that using quality in use metrics is the ultimate way to determine if the
software system succeeded. Let’s consider the following requirement of ACTL :

● “​A-RAMS-0060​: the availability of the Array Control Software, including Data
Acquisition, must be >99.5 %. ​Applicable States: Observing​”​ ​[4, Sec. 2.1.2].

Ideally we would want to measure the middleware and its impact on the system
availability when the middleware is already fully integrated in the real system and it is
executed by real users in a real context of use. By using quality in use metrics (e.g., safety
and satisfaction metrics) evaluators could determine with almost no uncertainty if the
system fulfilled the requirements of the users.

Yet we evaluate software to reduce the risk of the system failing in the future. Therefore
the problem with quality in use metrics is that when we are able use them it is already too
late, because the cost required to integrate a communication middleware in the system is
too high. Fortunately for us, the three types of metrics mentioned above are correlated as
shown in Figure 5.1 [47].

External metrics can be used to predict the value of the quality in use metrics by allowing
to evaluate the software product during testing and operation in a simulated
environment. Internal metrics can be used to predict the value of the external metrics by
allowing to evaluate the software product early, even before the software product
becomes executable [47].

CTA can use external metrics in an iteration of PECA due to the fact that they already have
the appropriate infrastructure such as sophisticated test beds, test harnesses and
prototypes. Some particularly valuable external metrics that I recommend for this
evaluation are described in Table 5.1 and Table 5.2.

Página 87 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Figure 5.1: Relationship between types of metrics.
Source: [47]

Unfortunately in this iteration of PECA I didn’t have the resources to use external metrics
directly so I had to rely on internal metrics instead. In Section 4.3.2 and Section 4.3.3 I
show how to use collecting data techniques for measuring two internal metrics: default
coupling and latency.

Table 5.1: Availability as an external metric in ISO 9126-1.
Source: Elaborated by the author

Name Availability

Description The readiness of the system for use during a specified period of time

Measurement Operation time / (operation time + mean time to repair)

Method of
measurement

Test the system in a product like environment for a specified period of time
performing all user operations. Measure the repair time period each time the system
was unavailable during the trial. Compute the mean time to repair.

Table 5.2: MTBF as an external metric in ISO 9126-1.
Source: Elaborated by the author

Name Mean time between failure

Description The frequency in which the software fail in the operation

Measurement Operation time / total number of actually detected failures

Method of
measurement

Count the numbers of failures occurred during a defined period of operation and
compute the average interval between the failures.

It might be tempting to reuse evaluation criteria directly from standards, literature or
from previous evaluations. For example, the CERN conducted a middleware evaluation for

Página 88 de 110

Evaluation of distributed-system technologies for ALMA Common Software

the Controls Middleware (CMW) project and it presented some of the details in [10, 57].
In these documents a set of requirements and criteria are listed. Even though the contexts
of the systems might be similar (i.e., CERN is trying to replace CORBA in their control
system) the evaluators executing PECA should be careful and refrain from copying these
criteria without previously considering their significance to their own system.

Finally if the reader is having doubts about the correctness of his or her evaluation criteria
it is useful to remember the four characteristics of good criteria described by
Comella-Dorda et al. [16]:

● Assessability: data can be gathered to measure the alternatives regarding the
criterion.

● Ability to discriminate: the criterion has to be useful to discriminate which
alternative is better.

● Non-overlapping: some overlapping criteria can be tolerated but it is not desirable
because It might generate misleading results and it also affects negatively the use
of AHP techniques.

● Significance: the criterion has to be valuable in the context of the system.

These principles can help the evaluators to refine the hierarchy. For example I included
the ​bulk data transfer support evaluation attribute as a child of the ​services support node
in the hierarchical representation of the problem. This evaluation attribute is assessable
through a performance benchmark, it has the ability to discriminate quantitatively
between the candidates and it is significant because if a middleware doesn’t provide
support for bulk data transfer then it will have to coexist with other middleware (e.g.,
ZeroMQ) or a protocol implemented by the ACTL team (maybe based on TCP) increasing
the integration cost and development cost. Nonetheless ​bulk data transfer support
overlaps with ​throughput ​so I removed the former from the hierarchy (see Figure 4.2).

5.3 Group decision-making and conflict resolution

Even though group decision-making and conflict resolution is out of the scope of this
dissertation, it is likely that CTA or any similar organization that might use this guide will
face these problems. In this section I briefly summarize the solutions proposed in [84].

Group decision-making is important because it allows the evaluators to consider the
expectations of different stakeholders and incorporate the knowledge of the experts in
different areas of this multiple-criteria decision-making problem. The solution proposed
in [84] consist in (optionally) dividing the full hierarchy representing the problem in
sub-hierarchies and then assigning the task of prioritizing each of those sub-hierarchies to
different subcommittees of experts. These subcommittees can work independently of
each other. For example, we might split the hierarchy described in Figure 4.2 into four and
assign the task of prioritizing the sub-hierarchies of ​Functional Requirements and the
Product Quality Characteristic to one subcommittee (because these topics are very
related) while another subcommittee might work on the ​Strategic Concerns and ​Domain
and Architecture Compatibility sub-hierarchies. It is expected that a group of experts will

Página 89 de 110

Evaluation of distributed-system technologies for ALMA Common Software

participate in each subcommittee so there has to be a way of aggregating the judgments
of all the participants working together. The standard way of aggregating judgments is by
calculating their geometric mean before entering the value in the AHP decision-making
software to calculate the priorities [84]. For example, in a two people subcommittee using
the fundamental scale shown in Table 4.7, if one expert thinks that ​Performance ​is equally
as important as ​Scalability (intensity 1) and the other thinks that ​Performance ​is
extremely more important than ​Scalability ​(intensity 9) ​the geometric mean of these
judgments is 3 in favor of ​Performance​, i.e., ​Performance ​is moderately more important
than ​Scalability​.

According to Mu and Pereyra-Rojas [84] the participants typically agree in the goal of the
evaluation and the alternatives or candidates to be evaluated, but there might be conflicts
regarding the criteria defined to represent the problem. For example one group of the
evaluation team might agree with our hierarchical decomposition in Figure 4.2, but
another group might choose different criteria to represent the decision-making problem.
The basic solution proposed is to work with both hierarchies in parallel and then choose
the alternative that provides best overall benefit for both representations of the problem.
Even though these hierarchies will have some differences, in a realistic scenario they
should be very similar so the effort required for the evaluation is not duplicated.

5.4 Choosing techniques for collecting data

After trimming the list of potential candidates during the Quick Assessment it is time to
collect data about those who passed the initial filtering phase. There are several
techniques for collecting data that can be executed for each evaluation attribute
generated in Section 4.2 (leaf nodes in Figure 4.2). What technique we choose to use
basically depends on two factors: the budget for the evaluation and the risk associated to
the evaluation attribute. In [16, Sec. 4.2] the techniques are classified in the three
categories: literature reviews, vendor appraisals and hands-on techniques.

Literature reviews are one of the cheapest way for collecting data so they may be
attractive for evaluators that wish to reduce the evaluation cost as much as possible. In
any case the evaluators should be careful to review only good quality and trusty sources. If
the evaluation attribute has a lot of associated risk then it is advisable to complement the
literature review with a hands-on technique.

At a first glance vendors appraisals might be considered irrelevant in this evaluation
because the middleware has to be open source software. I found that many open source
middlewares on the market also provide a commercial license, so a vendor does exist. In
the case of ​pure open source middleware, they are sometimes owned or supported by big
organizations. Gathering data from these vendors or organizations might be useful. In the
full hierarchical representation of the decision problem (Figure 4.2) I included this
strategic concern as the high level criterion ​Open Source Project Quality which is inspired
by the model proposed in [39]. From several other possibilities I chose this particular
model because it seems to provide low cost metrics for assess the quality of open source
projects. Of course, these metrics can be tailored (add, remove or replace) to fit the needs

Página 90 de 110

Evaluation of distributed-system technologies for ALMA Common Software

of the CTA evaluators and vendor appraisals can be used to collect data about some of
these criteria.

The hands-on techniques are the best way to collect trusty and high quality data. They are
also the most expensive. If the budget allows it, hand-on experiments should be used to
verify the claims and data collected by literature reviews. In any case hands-on techniques
should be used for collecting data about those evaluation attributes that represent a high
risk for the system success.

I found an interesting relationship between the data collection techniques described in
[16] and the metrics terminology suggested by the ISO/IEC 9126 standard [47] which was
introduced in Section 5.2. Table 5.3 shows this connection.

Table 5.3: Mapping between metrics types and data collection techniques.
Source: Elaborated by the author

Metrics type Data collection techniques

Internal metrics ● Literature reviews: users newsgroups, web pages, outside
evaluation reports, user manuals, documentation, marketing
brochures, release notes, version histories and vendor references.

● Vendor/owner appraisals: vendor/owner business and capability
information.

● Hand-on techniques: product probes, benchmarking and
demonstrations.

External metrics ● Hands-on techniques: test beds, scenario-based evaluations and
prototypes.

Quality in use metrics ● Hands-on techniques: product insertion.

In this phase of the ACTL system development is very unlikely that data about quality in
use metrics will be collected. Product insertions, which can have a relatively low cost,
require that the OTS component can be integrated easily with the other system
components [16]. This is definitely not the case in this evaluation because changing the
communication middleware will have repercussions in virtually all the components of the
system.

As I proposed in Section 5.2, collecting data about external metrics using test beds and
prototypes would be the best way to reduce uncertainty and risk because these
techniques provide an environment that is close to the real system context, but they are
relatively expensive. The recommendation is to use these techniques for collecting data
about, at least, the most important criteria that was prioritized in the second PECA step.
Fortunately CTA is already using test with prototype systems for decision making about
technology choices [19] and they also have test beds such as the one in INAF IASF Bologna
server room which is used for testing software component interactions of the ASTRI
SST-2M prototype [80].

Página 91 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Data collection techniques for measuring internal quality can be used more freely due to
their relative lower cost. Nevertheless collecting massive amounts of data without
purpose is not going to help either. I only included ​vendor business and capability
information as a source of vendor appraisal source in Table 5.3 because the importance of
the vendor in commercial off-the-shelf software is diluted when we are evaluating open
source software due to the existence of the community. Instead of gathering high
amounts of data about the vendor or owner, the evaluators are encouraged to collect
data about the open source community which might be done by examining the open
source project statistics and joining the corresponding mailing lists. Wasserman, Pal and
Chan [39] proposed several metrics to easily measure the quality of the open source
project using mostly literature reviews.

In Section 4.3.2 and Section 4.3.3 I show an example of the use of literature reviews and a
hands-on technique respectively for gathering data about internal metrics.

5.5 Avoiding common mistakes in middleware benchmarking

One common mistake that evaluators often commit is to benchmark performance instead
of making a real evaluation process, because the former is easier to do. As Henning [48, p.
3] eloquently points out about middleware benchmarking: “[by] having gone through the
‘evaluation process’ participants feel that they have exercised due diligence, even though
the results may well be irrelevant.” Moreover, “Synthetic benchmarks can provide only an
overall rough indication of the performance of a real application” [48, pp. 30-31]. Vinoski
also agrees that focusing blindly only on performance during middleware evaluation is
often a mistake: “it’s a lot like going out to purchase a new family sports utility vehicle and
coming home with a Porsche 911 Turbo: it doesn’t have room to actually seat the family,
nor is it capable of carrying any cargo or going off-road, but it is the fastest vehicle you can
find” [85, p. 89]. I chose to benchmark performance and specifically latency because of
three reasons: The communication middleware latency has a direct impact in the control
system overhead, performance is important for a system that needs to scale and, as
explained in Section 5.4, it is a feasible hands-on technique for data collection about an
internal metric in this iteration of PECA. (i.e., we don’t need a partial implementation of
the system to use this technique).

To avoid making a generic and irrelevant benchmarking I tailored it to better represent the
target system using the information gathered from the CTA documentation and the
meeting with members of the ACTL team. With the details of the current implementations
and prototypes I was able to design a more significative benchmarking as described in the
test setup of the benchmarking (see Section 4.3.3).

The most usual mistake during performance benchmarking that I found in the literature is
to start collecting the timing data from the beginning of the execution of the experiment
[78, 86]. This generates unstable results because the timing of the first operations are
often distorted by external factors such as application startup, priming of caches,
stabilization of adaptive resource allocation algorithms in response to system load or
network traffic and just in time compilation [78, Sec. 2.2]. To analyze the consequences of

Página 92 de 110

Evaluation of distributed-system technologies for ALMA Common Software

these issues I measured latency during warm-up time (first 10000 iterations)
independently from the latency during runtime (when the speed is stable) and present
both results.

Another mistake that practitioners make is to collect a low amount of measures.
Benchmarking middleware may be difficult because unexpected and unavoidable factors
can distort the results. One clear example is the Java garbage collector mechanism which
is fundamental for the correct execution of Java-based middleware, but introduces
non-deterministic distortions to the timing data [86]. To mitigate the effect of these kind
of factors, data about 100000 interactions was collected. Even though the benchmark
was executed in a closed network I couldn't isolate the experiment from external software
working on the same network used for the benchmarking. To mitigate this effect I ran the
benchmark in a period with very low activity (stable network) and executed the whole
experiment five times.

Some middleware technologies might not perform some actions when the user issues
them. This may happen when we unmarshal complex data types that provide
overloadable access operators or methods [78, Sec. 2.5]. In this benchmarking a structure
composed by simple data types was used as the parameter of the message.

The final mistake I address in this section is the use of software tools for measuring time in
a wrong resolution. “Benchmarking CORBA middleware typically involves measuring
actions that are as short as tens of microseconds” so the sources with millisecond or
worse resolution are inadequate [78, Sec. 2.1]. By doing a little research I found that
Python 3 provides ​time.perf_counter as a performance counter with the highest
available resolution to measure a short duration. On the other hand Java provides
System.nanoTime​. The time was only measured in the client processes so a C++ time
library wasn’t needed.

5.6 Guidelines for choosing the best AHP approach to consolidate data

The analytic hierarchy process provides two basic approaches to consolidate data [36]:
Absolute measurement and relative measurement. The choice between the two
approaches is mainly based on the experience and knowledge of the evaluators. Absolute
measurement allows the practitioners to evaluate an arbitrarily big list of candidates and
adding new candidates does not generate rank reversals, but creating scales, specially for
intangible criteria for which no standard scale exist, requires prior knowledge and
experience [36, 48].

On the other hand, relative measurement only supports a reduced amount of alternatives
because adding more candidates significatively increases the amount of pairwise
comparisons required. Furthermore adding new alternatives to the evaluation might
generate rank reversals. Nonetheless, this approach is feasible for more unexperienced
evaluators. Moreover, Saaty stated that “for most evaluations with no precedent, the
relative measurement is the only meaningful approach” [36, Sec. 1.4].

Página 93 de 110

Evaluation of distributed-system technologies for ALMA Common Software

CHAPTER 6: CONCLUSIONS

Due to the explosive growth of open-source software, organizations are relying more and
more on this COTS-like software to assist their development of complex systems. A
straightforward advantage of using these technologies is the reduction of the short term
cost of building a software system. Even though the OTS software provides some
functionality that otherwise must be coded by the development team, their use requires
at least two additional tasks: selection and integration. The evaluation and selection of the
appropriate open-source products is often an underestimated and overlooked task. The
developers are happy because they have several alternatives to use and they will avoid
great chunk of coding, but they forget that coding is replaced by selection and integration.
If we don’t do a proper job at selecting the OTS products then we are just transforming
short term cost into long-term cost (i.e., the integration effort required will increase and
the developers will have to fill several gaps of the OTS software to fulfill the requirement
specification of the system). Furthermore, it may be the case that the long-term cost
induced by the inadequate selection of OTS software is so high that the organization is
unable to pay it and the project ultimately fails.

Even though choosing the most trending or the ​coolest ​software of the moment might be
enough for the selection of trivial software, this is definitely not the case when we are
choosing a communication middleware. Some middleware products can be considered as
complex distributed systems on their own right and it is naive to think that we can
arbitrarily select one and just make it work because the cost of integrating such an OTS
software and the risk of the system failing are too high. We must follow an engineering
approach to select communication middleware which is especially beneficial for long-term
projects such as ACS and CTA.

In this work I propose a solution to the problem of communication middleware selection.
It is based on PECA which is a process for evaluation and selection of COTS software. This
methodical and systematic approach allow the evaluators to tailor the process according
to their needs and budget, so they have enough control to decide how much resources
are willing to spend in the short term to reduce the costs and the risk in the long term. In
Chapter 4 I validated this solution by applying it to the ACS's communication middleware
selection for CTA. A common deficiency of the selection processes in the literature is that
they often don't explain in detail to the evaluators what they have to do and how to do it.
In this dissertation I mitigated this deficiency by executing a first iteration of PECA that
might serve as a guide for the full execution of the process.

Managing trade-offs is an integral part of software development of distributed systems.
These trade-offs occur at different levels in the projects and should be identified and
highlighted as soon as possible because they are often a source of conflicts between
stakeholders and a source of system failures when they are not addressed correctly.
Unfortunately, as Henning stated, “Modern middleware has reached a level of complexity

Página 94 de 110

Evaluation of distributed-system technologies for ALMA Common Software

where only a handful of experts have the experience to correctly judge the relative merits
of various design and feature trade-offs” [48, p. 3].

Even though I am not an expert in distributed system, I was able to identify several
important trade-offs just by executing the evaluation and selection process proposed in
this dissertation. For example, CORBA is arguably slowing down ACS as its communication
middleware [10]. In my latency benchmarking I noted that the current implementations of
CORBA are not that slow when we compare them to some of their competitors (see
Section 4.3.3). So, What is happening? ACS does not only use CORBA, but it also
implements a custom Component Container Model (CCM) [7]. This CCM attempts to
separate the functional from the technical concerns and facilitating the deployment and
administration by increasing the system transparency (i.e., hiding low level details of
technologies used underneath such as CORBA). It is known that in distributed systems
there is a trade-off between transparency and performance. Maybe using the CCM was a
good idea in 2004, but today it should be reevaluated.

The CCM was created for a number of reasons such as facilitating the software
development of a complex system by domain experts that are not necessarily technical
experts by masking the complexity of CORBA. Although the origin of this complexity can
be argued about, one of the main reasons to use CORBA in the first place is because it
provides high interoperability in terms of programing languages, software and hardware
platforms supported. Modern observatories don’t need such degree of interoperability.
Homogeneous hardware and software can be acquired more easily now. CTA even
introduced an interoperability layer by using OPC UA middleware to homogenize the
access to hardware devices. So this apparent trade-off between interoperability and
complexity that CORBA impose is not so convenient anymore. If we can get the right
amount of interoperability (language interoperability is still important) and the right
amount of complexity by replacing CORBA for another technology, then we might analyze
the alternatives to the use of a CCM that are able to balance better the low-complexity
needs with the high-performance requirements.

On the other hand, performance is just a variable in the whole equation. What about the
high availability and reliability requirements of CTA? There is also a trade-off between
performance and reliability. ZeroMQ was the slowest technology in my latency
benchmarking, but it is known that it can handle network problems and reconnect the
client and server when the problems are solved. Even more, there is a trade-off between
the system performance and the level of abstraction in which developers works. Ice allows
the developers to work at a high level of abstraction with reliable implementations of
standard services which may be difficult (or expensive) to implement from scratch using
low level protocols like TCP and ZeroMQ in a reliable way. Nonetheless, sometimes we
also need to work at a low level of abstraction to get the required performance (e.g., for
CTA bulk data transfer). As was stated during the coupling analysis in Section 4.4.3,
centralized administrative information reduce the coupling of the system making it more
extensible, but at the same time, centralized data affects negatively to the scalability of
the system [24].

Página 95 de 110

Evaluation of distributed-system technologies for ALMA Common Software

Distributed control systems are inherently complex. Fortunately, besides the selection of
an appropriate middleware, the execution of PECA also allows the evaluators to improve
their insight about the system making this process the perfect opportunity for senior
engineers and experts to share their knowledge with the rest of the organization and even
training junior engineers that might be included in the evaluation team. Moreover, by
properly documenting the process, the evaluation team can also share its improved
know-how about making evaluations (e.g., useful evaluation criteria and data collecting
techniques). These documents form part of the reuse infrastructure of the organization
and they can be used to support a new iteration of PECA or even the evaluation of
another relevant OTS software products.

PECA proved to be a good approach for middleware evaluation and selection, but it has
some limitations. For instance it relies on human experience to tailor de process and
requires expert support for handling the mismatches of the OTS product. By being a
tailorable process PECA also inherits the limitations of the techniques used during its
execution. The use of pairwise comparison as described by AHP to prioritize the criteria
and generating scores of the candidates also relies on the judgment of knowledgeable
evaluators. Even though these limitations may not affect CTA, they might be
showstoppers for other organizations that lack the necessary personnel and resources for
conducting this process.

These shortcomings are a source of future research. For example, AHP pairwise
comparisons might be replaced by another technique that does not relies so heavily in
expert availability. Moreover, AHP is a well-known approach for solving MCDM problems
that has being researched for several years. In this dissertation I used a classic
implementation of AHP, yet many variants of the process has being proposed over the
years and their application to this particular problem can be analyzed. On the other hand,
due to the partial execution of PECA, there is still a lot of work to be done. A research
about good metrics for the evaluation attributes presented in Figure 4.2 and their
respective measurement methods would be an excellent complement to this effort.

The development of complex distributed systems is often a roadmap filled with obstacles
that we must overcome. This dissertation allow us to make a step on this direction by
supporting engineers in the execution of a fundamental task for assuring the success of
the systems based on the reuse of OTS software.

Página 96 de 110

Evaluation of distributed-system technologies for ALMA Common Software

REFERENCES

[1] ​J. Ibsen ​et al.​, “Building a world-wide open source community around a software
framework: progress, dos, and don’ts,” in ​Software and Cyberinfrastructure for
Astronomy IV​, 2016, vol. 9913, p. 99131D.

[2] M. Araya, L. Pizarro, and H. von Brand, “Packaging and High Availability for Distributed
Control Systems,” in ​Proceedings, 16th International Conference on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS 2017): Barcelona, Spain, October
8-13, 2017​, 2018, p. THPHA045.

[3] C. E. Menay ​et al.​, “New architectures support for ALMA common software: lessons
learned,” in ​Software and Cyberinfrastructure for Astronomy​, 2010, vol. 7740, p.
77401S.

[4] W. Hofmann, Ed., “ACTL requirements,” CTA Consortium, MAN-PO/121201, May 2013.

[5] M. Araya ​et al.​, “A New ACS Bulk Data Transfer Service for CTA,” in ​Proceedings, 16th
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2017): Barcelona, Spain, October 8-13, 2017​, 2018, p. THBPL03.

[6] M. Hiramatsu, “Special Contribution ALMA and its Observational Achievements:
Unveiling the Mysteries of the Dark Universe,” ​Fujitsu Sci. Tech. J.​, vol. 53, no. 3, pp.
9–14, 2017.

[7] G. Chiozzi ​et al.​, “The ALMA common software: a developer-friendly CORBA-based
framework,” in ​Advanced Software, Control, and Communication Systems for
Astronomy​, 2004, vol. 5496, pp. 205–219.

[8] G. Chiozzi, H. Sommer, and J. Schwarz, “ALMA common software architecture,” ​ALMA
Project document COMP70​, vol. 25, 2009.

[9] M. Henning, “The Rise and Fall of CORBA,” ​Queueing Syst.​, vol. 4, no. 5, pp. 28–34, Jun.
2006.

[10] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P. Charrue, “Middleware trends and
market leaders 2011,” in ​Conf. Proc.​, 2011, vol. 111010, p. FRBHMULT05.

[11] J. Avarias, H. Sommer, and G. Chiozzi, “Data Distribution Service as an alternative to
CORBA Notify Service for the ALMA Common Software,” in ​Proceedings of 12th
International Conference on Accelerator and Large Physics Control Systems (ICALEPCS)],
Advanced Telescope and Instrumentation Control Software II​, 2009.

Página 97 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[12] J. A. Avarias, J. S. López, C. Maureira, H. Sommer, and G. Chiozzi, “Introducing high
performance distributed logging service for ACS,” in ​Software and Cyberinfrastructure
for Astronomy​, 2010, vol. 7740, p. 77403G.

[13] B. Jeram, G. Chiozzi, R. J. Tobar, M. Watanabe, and R. Amestica, “Reimplementing the
bulk data system with DDS in ALMA ACS,” ​ICALEPCS, TUCOCB08, San Francisco, USA​,
2013.

[14] H. Dai, S. Mishra, and M. A. Hiltunen, “CORBA-as-Needed: A Technique to Construct
High Performance CORBA Applications,” in ​High Performance Computing — HiPC 2002​,
2002, pp. 141–150.

[15] ACTL Team and Others, “Array Control & Data Acquisition Technical Design Report,”
CTA Consortium, Tech. Rep. ACTL-TDR/140415, May 2015.

[16] S. Comella-Dorda, J. Dean, G. Lewis, E. Morris, P. Oberndorf, and E. Harper, “A Process
for COTS Software Product Evaluation,” CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, CMU/SEI-2003-TR-017, Jul. 2004.

[17] A. Orlati ​et al.​, “Evolution in the Development of the Italian Single-dish COntrol System
(DISCOS),” in ​Proceedings, 16th International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS 2017): Barcelona, Spain, October 8-13,
2017​, 2018, p. THPHA014.

[18] T. C. Consortium, “Cherenkov Telescope Array: The Next Generation Gamma-ray
Observatory,” ​arXiv preprint arXiv:1709.05434​, 2017.

[19] M. Füßling ​et al.​, “Status of the array control and data acquisition system for the
Cherenkov Telescope Array,” in ​Software and Cyberinfrastructure for Astronomy IV​,
2016, vol. 9913, p. 99133C.

[20] V. Sliusar ​et al.​, “Control Software for the SST-1M Small-Size Telescope prototype for
the Cherenkov Telescope Array,” ​arXiv [astro-ph.IM]​, 13-Sep-2017.

[21] E. Antolini and Others, “Telescope Control System of the ASTRI SST-2M prototype for
the Cherenkov Telescope Array,” in ​Proceedings, 16th International Conference on
Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017):
Barcelona, Spain, October 8-13, 2017​, 2018, p. THMPL04.

[22] M. Völter, M. Kircher, and U. Zdun, “Introduction To Distributed Systems,” in ​Remoting
patterns: foundations of enterprise, internet and realtime distributed object
middleware​, John Wiley & Sons, 2013, pp. 1–18.

Página 98 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[23] Q. Mahmoud, “Introduction,” in ​Middleware for Communications​, John Wiley & Sons,
2005, pp. 30–37.

[24] A. S. Tanenbaum and M. Van Steen, ​Distributed systems: principles and paradigms​.
Prentice-Hall, 2007.

[25] M. F. Alrahmawy, “Real-Time Middleware,” ​no. September​, 2010.

[26] D. C. Schmidt, “Real-time CORBA with TAO (The ACE ORB),” ​Washington University in
St. Louis - Computer Science & Engineering at WashU​, 13-Jan-2013. [Online]. Available:
http://www.cs.wustl.edu/~schmidt/TAO.html. [Accessed: 20-May-2018].

[27] “JacORB,” ​JacORB​, 31-Aug-2017. [Online]. Available: https://www.jacorb.org/.
[Accessed: 19-May-2018].

[28] D. Grisby, “Free CORBA ORB,” ​omniORB​, 11-May-2018. [Online]. Available:
http://omniorb.sourceforge.net/. [Accessed: 19-May-2017].

[29] X. Liu, C. Combe, and B. Wang, “Component-based development.” Google Patents,
2008.

[30] R. Garg, “A systematic review of COTS evaluation and selection approaches,”
Accounting Finance​, vol. 3, no. 4, pp. 227–236, 2017.

[31] V. Bali and S. Madan, “COTS Evaluation & Selection Process in Design of Component
based Software System: An Overview and Future Direction,” ​Global Journal of
Computer Science and​, 2015.

[32] F. Tarawneh, F. Baharom, J. H. Yahaya, and F. Ahmad, “Evaluation and selection COTS
software process: The state of the art,” ​International Journal of New Computer
Architectures and their Applications (IJNCAA)​, vol. 1, no. 2, pp. 344–357, 2011.

[33] K. Basir, A. Khanum, F. Azam, and A. Qavi, “TAES-COTS: Thorough Approach for
Evaluation & Selection of COTS Products,” in ​Frontiers of Information Technology (FIT),
2014 12th International Conference on​, 2014, pp. 91–96.

[34] A. Mohamed, G. Ruhe, and A. Eberlein, “COTS selection: past, present, and future,” in
Engineering of Computer-Based Systems, 2007. ECBS’07. 14th Annual IEEE International
Conference and Workshops on the​, 2007, pp. 103–114.

[35] J. Kontio, G. Caldiera, and V. R. Basili, “Defining Factors, Goals and Criteria for Reusable
Component Evaluation,” in ​Proceedings of the 1996 Conference of the Centre for
Advanced Studies on Collaborative Research​, 1996, p. 21.

Página 99 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[36] T. L. Saaty, “Fundamentals of decision making and priority theory with the analytic
hierarchy process (Analytic Hierarchy Process Series, Vol. 6),” ​Auflage, Pittsburg​, 2000.

[37] M. Brunelli, “Introduction and fundamentals,” in ​Introduction to the Analytic Hierarchy
Process​, Springer, 2014, pp. 7–20.

[38] T. L. Saaty, “How to Make a Decision: The Analytic Hierarchy Process,” ​Interfaces ​, vol.
24, no. 6, pp. 19–43, Dec. 1994.

[39] A. Wasserman, M. Pal, and C. Chan, “The business readiness rating model: an
evaluation framework for open source,” in ​Proceedings of the EFOSS Workshop, Como,
Italy​, 2006.

[40] X. Burgués, C. Estay, X. Franch, J. A. Pastor, and C. Quer, “Combined Selection of COTS
Components,” in ​COTS-Based Software Systems​, 2002, pp. 54–64.

[41] E. H. Forman, “Facts and fictions about the analytic hierarchy process,” ​Math. Comput.
Model.​, vol. 17, no. 4, pp. 19–26, Feb. 1993.

[42] R. Whitaker, “Criticisms of the Analytic Hierarchy Process: Why they often make no
sense,” ​Math. Comput. Model.​, vol. 46, no. 7, pp. 948–961, Oct. 2007.

[43] A. Emrouznejad and M. Marra, “The state of the art development of AHP (1979--2017):
a literature review with a social network analysis,” ​Int. J. Prod. Res.​, vol. 55, no. 22, pp.
6653–6675, 2017.

[44] G. Raffi, B. Glendenning, J. Schwarz, B. Glendenning, R. Sramek, and C. Haupt, “ALMA
Common Software Technical Requirements,” ​Organization​, vol. 2005, pp. 09–26, 2005.

[45] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communication
Middleware on High-speed Networks,” in ​Conference Proceedings on Applications,
Technologies, Architectures, and Protocols for Computer Communications​, Palo Alto,
California, USA, 1996, pp. 306–317.

[46] W. B. Goethert, E. K. Bailey, and M. B. Busby, “Software Effort and Schedule
Measurement: A framework for counting Staff-hours and reporting Schedule
Information,” CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST, CMU/SEI-92-TR-021, Sep. 1992.

[47] Software engineering -- Product quality -- Part 1: Quality model​, ISO/IEC 9126-1:2001,
Jun. 2001.

Página 100 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[48] M. Henning, “Choosing middleware: Why performance and scalability do (and do not)
matter,” ​Whitepaper​, 2009.

[49] IEEE Standard Glossary of Software Engineering Terminology​, 610.12-1990, Dec. 1990.

[50] I. Wijegunaratne and G. Fernandez, ​Distributed Applications Engineering: Building New
Applications and Managing Legacy Applications with Distributed Technologies​. Springer
Science & Business Media, 2012.

[51] T. L. Saaty and L. G. Vargas, ​Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process​. Springer Science & Business Media, 2012.

[52] B. K. Jayaswal, P. C. Patton, and E. H. Forman, ​The Analytic Hierarchy Process (AHP) in
Software Development (Digital Short Cut)​. Pearson Education, 2007.

[53] G. Hohpe and B. Woolf, “Integration Styles,” in ​Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions​, Addison-Wesley Professional,
2004, pp. 39–56.

[54] D. G. M. Garcia, “Event Management and Composition Framework for Building
Adaptive Systems,” 2006.

[55] Inspirel, “YAMI4 vs. ZeroMQ,” ​Inspirel​, Apr-2017. [Online]. Available:
http://www.inspirel.com/articles/YAMI4_vs_ZeroMQ.html. [Accessed: 24-Dec-2017].

[56] P. Wegner ​et al.​, “The software system for the Control and Data Acquisition for the
Cherenkov Telescope Array,” in ​Journal of Physics: Conference Series​, 2016, vol. 762, p.
012030.

[57] A. Dworak, F. Ehm, P. Charrue, and W. Sliwinski, “The new CERN controls middleware,”
in ​Journal of Physics: Conference Series​, 2012, vol. 396, p. 012017.

[58] TANGO Consortium, “What is Tango Controls ?,” ​What is Tango Controls ? - TANGO
Controls​, n.d. [Online]. Available:
http://www.tango-controls.org/what-is-tango-controls/. [Accessed: 23-May-2018].

[59] A. M. Riad, A. E. Hassan, and Q. F. Hassan, “Investigating performance of XML Web
services in real-time business systems,” ​Journal of Computer Science and System
Biology​, vol. 2, pp. 266–271, 2009.

[60] The Open MPI Project, “FAQ: General information about the Open MPI Project,” ​Open
MPI: Open Source High Performance Computing​, 08-May-2018. [Online]. Available:
https://www.open-mpi.org/faq/?category=general. [Accessed: 19-May-2018].

Página 101 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[61] Real-Time Innovations, “Develop and Integrate Systems with Connext DDS Professional
| RTI Products,” ​RTI​, n.d. [Online]. Available: https://www.rti.com/products/dds.
[Accessed: 19-May-2018].

[62] Object Computing, Inc., “OpenDDS,” ​OpenDDS​, n.d. [Online]. Available:
http://opendds.org/. [Accessed: 19-May-2018].

[63] P. Hintjens, “ØMQ - The Guide,” ​Distributed Messaging - zeromq​, n.d. [Online].
Available: http://zguide.zeromq.org/page:all. [Accessed: 13-Jan-2018].

[64] Inspirel, “YAMI4 - Messaging Solution for Distributed Systems,” ​Inspirel​, n.d. [Online].
Available: http://www.inspirel.com/yami4/. [Accessed: 19-May-2018].

[65] IBM, “IBM Knowledge Center,” ​IBM - United States​, 19-May-2018. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.do
c/q001020_.htm. [Accessed: 19-May-2018].

[66] Apache Software Foundation, “Apache Thrift - Home,” ​Apache Thrift - Home​, n.d.
[Online]. Available: https://thrift.apache.org/. [Accessed: 19-May-2018].

[67] Google Inc., “gRPC open-source universal RPC framework,” ​GRPC​, n.d. [Online].
Available: https://grpc.io/about/. [Accessed: 19-May-2018].

[68] EPICS V4 Working Group, “EPICS Version 4 Home Page,” ​EPICS Version 4 Home Page​,
n.d. [Online]. Available: http://epics-pvdata.sourceforge.net/. [Accessed:
19-May-2018].

[69] Oracle Corporation, “An Overview of RMI Applications,” ​Lesson: All About Sockets (The
Java​TM​ Tutorials > Custom Networking)​, n.d. [Online]. Available:
https://docs.oracle.com/javase/tutorial/rmi/overview.html. [Accessed: 19-May-2018].

[70] ZeroC ,Inc., “Ice,” ​ZeroC, Inc​, n.d. [Online]. Available: https://zeroc.com/products/ice.
[Accessed: 19-May-2018].

[71] .NET Foundation, “What Is Windows Communication Foundation,” ​Microsoft Docs​,
30-Mar-2017. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf. [Accessed:
20-May-2018].

[72] The Apache Software Foundation, “Apache CXF​TM​: An Open-Source Services
Framework,” ​Apache CXF​, 16-Apr-2018. [Online]. Available: http://cxf.apache.org/.
[Accessed: 21-May-2018].

[73] Google Inc., “Protocol Buffers | Google Developers,” ​Google​, n.d. [Online]. Available:
https://developers.google.com/protocol-buffers/. [Accessed: 21-May-2018].

Página 102 de 110

Evaluation of distributed-system technologies for ALMA Common Software

[74] Systems and software engineering -- Vocabulary​, ISO/IEC/IEEE 24765:2010, Dec. 2010.

[75] M. Zenger, “PROGRAMMING LANGUAGE ABSTRACTIONS FOR EXTENSIBLE SOFTWARE
COMPONENTS,” ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2004.

[76] E. Yourdon and L. L. Constantine, ​Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design​, 1st ed. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1979.

[77] M. Henning and M. Spruiell, “Distributed programming with ice,” ​ZeroC Inc. Revision​,
vol. 3, p. 97, 2003.

[78] A. Buble, L. Bulej, and P. Tuma, “Corba benchmarking: A course with hidden obstacles,”
in ​Parallel and Distributed Processing Symposium, 2003. Proceedings. International​,
2003, p. 6–pp.

[79] A. Krüger and B. Neppert, “Software Architecture for ACTL,” CTA Consortium, Aug.
2015.

[80] V. Conforti and Others, “Procedures of Software Integration Test and Release for ASTRI
SST-2m Prototype Proposed for the Cherenkov Telescope Array,” in ​Proceedings, 16th
International Conference on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2017): Barcelona, Spain, October 8-13, 2017​, 2018, p. TUPHA004.

[81] I. Sadeh, I. Oya, J. Schwarz, E. Pietriga, and D. Dezman, “The Graphical User Interface of
the Operator of the Cherenkov Telescope Array,” in ​Proceedings of the 2017 ICALEPCS
conference​, 2017.

[82] I. Millet and T. L. Saaty, “On the relativity of relative measures--accommodating both
rank preservation and rank reversals in the AHP,” ​Eur. J. Oper. Res.​, vol. 121, no. 1, pp.
205–212, 2000.

[83] W. Ossadnik and R. Kaspar, “Evaluation of AHP software from a management
accounting perspective,” ​Journal of Modelling in Management​, vol. 8, no. 3, pp.
305–319, 2013.

[84] E. Mu and M. Pereyra-Rojas, ​Practical Decision Making using Super Decisions v3: An
Introduction to the Analytic Hierarchy Process​. Springer, 2017.

[85] S. Vinoski, “The performance presumption [middleware evaluation],” ​IEEE Internet
Comput.​, 2003.

[86] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle, “7 BENCHMARKING THE
ROUND-TRIP LATENCY OF VARIOUS JAVA-BASED MIDDLEWARE PLATFORMS,” 2015.

Página 103 de 110

Evaluation of distributed-system technologies for ALMA Common Software

APPENDIX A (PECA STEPS)

1. Planning the evaluation
a. Forming the evaluation team

i. Include people with diverse skills (e.g., technical experts, domain
experts, business analyst and end users)

b. Creating the charter
i. Evaluation goal and scope

ii. Team members description
iii. State of commitment of evaluators and decision makers
iv. Factors that limit the selection
v. Summary of decisions already being made

c. Identifying Stakeholders
i. Avoid errors of inclusion or exclusion

ii. Identify their expectations
d. Picking the approach

i. Assess the complexity of the evaluation and risk of failure and
determine if they justify a methodical evaluation process (such as
PECA)

ii. Choose between​ first fit​ or ​best fit​ approach
iii. Define some initial filters if the number of potential candidates is

too high
e. Estimating Resources and Schedule

i. Consider factors like level of rigor, risk involve, number of
candidates and the evaluators level of experience

2. Establishing the criteria
a. Defining the evaluation requirements

i. Some sources are: system requirements, architecture/interface
constraints, programmatic constraint, operational environment and
stakeholders expectations

ii. Avoid error of inclusion and exclusion
iii. Determine if the requirements are mandatory or negotiable

b. Defining the evaluation criteria
i. Decompose the evaluation requirement into criteria (capability

statements) that the alternatives should comply
ii. Verify that each criteria is evaluable, significative, non-overlapping

and have the ability to discriminate between the candidates
c. Establishing priorities

Página 104 de 110

Evaluation of distributed-system technologies for ALMA Common Software

i. Make judgements based on your understanding of the system to
assign priorities to the criteria using some technique (e.g.,
unstructured weighing, Delphi technique or pairwise comparison).

3. Collecting data
a. Literature Reviews

i. Sources: Internet, reports from outside evaluators (beware of the
different system context), user manuals, marketing brochures,
release notes, version histories, etc

b. Vendor Appraisals
i. Sources: Interviews, vendor literature, capability evaluations,

financial analyses (external), strategic information and list of users,
customer compliments and complaints, etc

c. Hands-on Techniques
i. Techniques: test beds, product probes, prototypes, scenario-based

evaluations, benchmarking, product insertion and demonstrations

4. Analysing the data
a. Consolidation of data

i. Merge the qualitative and quantitative data into useful information
(like a score of fitness for each candidate) using some technique

b. Analyse the consolidated information
i. Reason about the information generated previously. Use some

techniques to help you in this task
c. Making the recommendations

i. Predict what information the decision makers need and provide it to
them

ii. Document the data gathered and the knowledge generated during
the evaluation. You might adapt the templates in Appendix B,
Appendix C and Appendix D to your particular needs.

Página 105 de 110

Evaluation of distributed-system technologies for ALMA Common Software

APPENDIX B (PRODUCT DOSSIER TEMPLATE)

1. Product Identification
a. Name
b. Version number, rev number, patches installed, etc.

2. Vendor Contact Information
3. Product Description

[Summary of what the product does and what it is being considered for/how it is used in
the system.]

4. Product Status

[Current state of decisions made regarding use of the product, whether it has been
selected, is being used, actively maintained, or being replaced/retired.]

5. State of Evaluation, Testing, Certification
6. Vendor Data (includes raw and processed information)

a. Financial
b. Business
c. Engineering

7. Product Data (includes raw and processed information)
a. Basic characteristics
b. Standards
c. Hardware/software configuration required
d. Functional capabilities
e. Nonfunctional capabilities [usability, supportability, interoperability,

reliability, security, etc.]
f. Interactions and behavior
g. Performance
h. Documentation
i. Licensing
j. Architecture
k. Noted discrepancies between the product and its documentation

8. Product Limitations
a. Product deficiencies
b. Limitations on product use

9. System Relationships, Tailoring, and Modifications (includes raw and processed
information)

a. System configuration
b. System adaptation
c. System integration
d. Product and system tailoring and modification
e. Design strategies for using product

Página 106 de 110

Evaluation of distributed-system technologies for ALMA Common Software

10. Product Usage History
a. Dates considered, used, retired
b. Bugs/problems reported
c. Disposition of bugs/problems
d. Queries to vendor or third parties for support
e. Changes/updates to configurations and tailoring [capture rationale,

changes, and results]
f. Preventative/other maintenance performed

11. Dossier Usage History
a. Who, what, and why record of access to Dossier components
b. Errata or inconsistencies found [additional information required]

Página 107 de 110

Evaluation of distributed-system technologies for ALMA Common Software

APPENDIX C (EVALUATION RECORD TEMPLATE)

1. Charter
1.1. Background

1.1.1. a. Date of effort
1.1.2. b. Evaluation team members and qualifications
1.1.3. c. Facilities and resources used

1.2. System Stakeholders

Stakeholder Requirements Sponsorship,
administration

Contractual
information

Technical
information

Other

1.3. Approach
1.3.1. Depth

1.3.1.1. Complexity
1.3.1.2. Risk of failure

1.3.2. First fit vs. best fit
1.3.3. Number and type of filters
1.3.4. Other

2. Criteria Record

Criterion Negotiability
Non applicable
Very negotiable
Negotiable
Barely Negotiable
Hard Requirement

Capability
Statement

Measurement
Method

Página 108 de 110

Evaluation of distributed-system technologies for ALMA Common Software

3. Results Record

Criterion <product1 name> <product2 name>

Measurement
Results

Repair
Strategy(s) and

Cost of
Fulfillment

Measurement
Results

Repair
Strategy(s) and

Cost of
Fulfillment

4. Assessment of Evaluation Effort
4.1. Limitations or deficiencies
4.2. Rationale for all decisions made

Página 109 de 110

Evaluation of distributed-system technologies for ALMA Common Software

APPENDIX D (SUMMARY OF RESULTS TEMPLATE)

1. Analysis of fitness
a. Observed product features and limitations
b. Performance against criteria for all candidates
c. Behaviour and interactions with other components
d. Results of gap analysis, fulfillment strategies and fulfillment costs
e. Results of sensitivity analysis

2. Analysis of evaluation deficiencies
a. Need for further evaluation
b. Confidence in results

3. Discovered facts

[Differences between product and documentation, for example]

4. Others (Optional)
a. recommended products or alternate solutions, with rationale and system

implications
b. if the recommendation is to ​use​, recommendations regarding

i. architecture, design, implementation
ii. tailoring or wrapping

iii. integration and system testing
iv. maintenance and support

c. if the recommendation is not to ​use
i. alternatives (such as build, change requirements, etc.)

Página 110 de 110

