EVALUACIÓN DEL POTENCIAL DE IMPLEMENTACIÓN DEL SISTEMA DE CLIMATIZACIÓN TABS EN EDIFICIOS DE OFICINAS EN CHILE

ÁLVARO CURINAO PINO

MEMORIA PARA OPTAR AL TITULO DE INGENIERO CIVIL MECÁNICO,
MENCION ENERGÍA

PROFESOR GUÍA: Ph.D. ING. RODRIGO BARRAZA VICENCIO
PROFESOR CORREFERENTE: DR. ARQUITECTO MIGUEL ÁNGEL GALVEZ

AGOSTO-2017
Resumen

El uso de Sistemas Constructivos Térmicamente Activados o TABS en el acondicionamiento térmico de edificios de oficinas se ha vuelto prominente en las últimas décadas en algunas zonas de Europa. Esta tecnología de acondicionamiento radiante incorpora al hormigón como dispositivo de almacenamiento térmico, que se carga de energía durante las horas de ocupación, y se descarga mediante la circulación de un fluido caloportador a través de tuberías empotradas en el núcleo de la estructura, amortiguando la oscilación de la temperatura del aire interior.

Este trabajo de título tiene por finalidad evaluar el potencial de implementación del sistema de acondicionamiento térmico TABS en un edificio de oficinas en las distintas zonas climáticas del país. Para esto, se desarrollará un modelo paramétrico que incorpora las principales ganancias y pérdidas de energía en un edificio, además de la energía que aporta (o disipa) el TABS y, a través de un modelo transiente, finalmente calcular la temperatura de aire interior, que es el parámetro escogido para asegurar el cumplimiento de las condiciones de confort térmico. Además, es necesario proponer un sistema de control para los TABS, cuyos parámetros de entrada se ajusten de acuerdo a los requerimientos de cada ciudad modificando la curva de temperatura de suministro del agua, o las condiciones de accionamiento de la bomba.

Los resultados obtenidos a través del modelo elaborado servirán para determinar en qué ciudades es más factible aplicar este sistema, cuáles son los aspectos más relevantes a considerar en su diseño, y la demanda energética en cada zona climática estudiada necesaria para el cumplimiento de las condiciones de confort térmico.

Palabras Clave: Sistemas Constructivos Térmicamente Activados, Inercia Térmica, Núcleo de Concreto Activado
Abstract

The use of Thermally Activated Building Systems or TABS in thermal conditioning office buildings has become prominent in recent decades in some areas of Europe. This radiant conditioning technology incorporates the concrete as a thermal storage device, which charges energy during the hours of occupancy, and is discharged by the circulation of a heat transfer fluid through pipes embedded in the core of building, moderating the oscillation of indoor air temperature.

The purpose of this work is to evaluate the potential for implementation of TABS in an office building in different climatic zones of country. For this, a parametric model will be developed that incorporates the main energy gains and losses in a building, further to the energy supplied (or dissipated) by TABS and, through a transient model, finally calculate the indoor air temperature, which is the parameter chosen to ensure compliance with the thermal comfort conditions. Further, is necessary to propose a control system for TABS, whose input parameters are adjusted according to requirements of each city by modifying the water supply temperature curve or the pump operating conditions.

The results obtained through the elaborated model will serve to determine in which cities it is most feasible to apply this system, what are the most relevant aspects to consider in its design, and the energy demand in each climatic zone studied necessary for the fulfillment of conditions for thermal comfort.

Keywords: Thermally Activated Building Systems, Thermal Inertia, Concrete Core Activation
Índice General

Resumen........................................................................................................................................i

Abstract ......................................................................................................................................... ii

1. Introducción .................................................................................................................................. 1
   1.1 Objetivo General ...................................................................................................................... 2
   1.2 Objetivos Específicos .............................................................................................................. 2

2. Estado del Arte ............................................................................................................................. 3
   2.1 Tipologías de sistemas radiantes ........................................................................................... 3
      2.1.1 Paneles Radiantes ............................................................................................................. 3
      2.1.2 Sistemas Superficiales Embebidos .................................................................................. 4
      2.1.3 Forjados Activos o TABS .............................................................................................. 5
   2.2 Sistemas TABS ....................................................................................................................... 6
   2.3 Funcionamiento ....................................................................................................................... 9
   2.4 Modelos de Control ............................................................................................................... 12
      2.4.1 Criterios de Confort Térmico ............................................................................................ 12
      2.4.2 Modelos de control en TABS ............................................................................................ 14

3. Cargas Térmicas en un Edificio ................................................................................................... 18
   3.1 Ganancias Internas ................................................................................................................. 19
      3.1.1 Ocupación ........................................................................................................................ 19
      3.1.2 Iluminación ....................................................................................................................... 19
      3.1.3 Equipos ............................................................................................................................. 20
   3.2 Envolvente Térmica ............................................................................................................... 21
   3.3 Ganancia Solar a través de Ventanas ..................................................................................... 24
   3.4 Ventilación e Infiltración ......................................................................................................... 28
      3.4.1 Ventilación ........................................................................................................................ 29
      3.4.2 Infiltración ........................................................................................................................ 29
4. Transferencia de calor en TABS ................................................................. 31
   4.1 Modelo en Estado Estacionario EMPA ............................................... 31
      4.1.1 Resistencias Térmicas en el modelo TABS ................................. 33
   4.2 Modelo en Estado Transiente ............................................................ 36
   4.3 Determinación de la Temperatura del aire interior $T_{ia}$ .................... 38
   4.4 Conclusión .......................................................................................... 39
5. Modelo de Control Convencional en TABS ............................................. 40
6. Caso de estudio: Edificio de Oficinas .................................................... 43
   6.1 Edificio Típico de oficinas de una zona ............................................ 44
   6.2 Construcción de datos meteorológicos .............................................. 45
   6.3 Metodología de modelación ............................................................... 46
      6.3.1 Software utilizado ...................................................................... 46
      6.3.2 Características del modelo .......................................................... 46
      6.3.3 Supuestos .................................................................................. 47
      6.3.4 Variables de Entrada ................................................................... 48
   6.4 Validación del modelo ........................................................................ 48
      6.4.1 Rango de aplicación del modelo TABS ......................................... 48
      6.4.2 Transmisión térmica entre la superficie y el recinto ....................... 49
      6.4.3 Comportamiento de la temperatura interior .................................. 50
7. Resultados y Análisis ................................................................................ 51
   7.1 Cargas Térmicas .................................................................................. 52
   7.2 Demanda de energía ............................................................................ 53
   7.3 Tiempo de operación de la bomba ....................................................... 57
   7.4 Casos Adicionales ................................................................................ 60
      7.4.1 Infiltración según la normativa chilena ........................................... 60
      7.4.2 Ganancias de calor sensible por ocupación ................................. 61
Índice de Figuras

Figura 2.1 Panel Radiante tipo S [3] ................................................................. 4
Figura 2.2. Sistemas Superficiales Embebidos según su posición [2] .................. 4
Figura 2.3 Esquema de calefacción por suelo radiante [4] .................................. 5
Figura 2.4. Tuberías acopladas al hormigón en TABS [5] .................................... 5
Figura 2.7. Ciclo de operación diaria de un sistema TABS [8] ............................... 10
Figura 2.8. Esquema cualitativo de la reducción de cargas puntas con el uso de TABS [10] 11
Figura 2.9. Porcentaje de personas insatisfechas (PPD) para un rango de temperaturas y diferentes atuendos [9] .................................................................................. 13
Figura 2.10. Modos de operación de TABS: a) Funcionamiento continuo de la bomba. b) Funcionamiento de la bomba durante la noche. c) Funcionamiento cíclico continuo de la bomba. d) Funcionamiento cíclico discontinuo de la bomba .............................................................. 16
Figura 3.1. Flujos de calor en un edificio [14] .......................................................... 18
Figura 3.2. Red de resistencias Térmicas entre la temperatura interior y exterior del recinto [17] ............................................................................................................ 24
Figura 3.3. Radiación directa en una superficie horizontal e inclinada [19] .............. 27
Figura 3.4. Geometría de protección por persianas ............................................... 28
Figura 4.2 Detalle de TABS en el caso de estudio ................................................ 33
Figura 4.3. Red de resistencias térmicas en TABS. (a) Configuración en triángulo, y (b) configuración en estrella .............................................................. 33
Figura 4.4. Red de Resistencias Térmicas en TABS .............................................. 35
Figura 4.5. Balance de energía y acumulación en el hormigón .............................. 37
Figura 5.1. Curva de Temperatura de suministro del agua en función de la temperatura exterior ............................................................................................................. 40
Figura 5.2 Diagrama de bloque general del controlador de 3 etapas on/off con realimentación (feedback) [5] ........................................................................... 41
Figura 5.3. (a) Adaptación al valor setpoint de temperatura ($\Delta T_h/\Delta T_c$). (b) Adaptación de la curva de calefacción/enfriamiento ($CF_{hsV}/CF_{csV}$) [5] ................................................................. 42
Figura 6.1 Layout de planta de oficinas abiertas con un espacio no acondicionado ...... 44
Figura 6.2 Variación de la temperatura al interior del recinto acondicionado con TABS ..... 50
Figura 7.1 Ejemplo de Simulación de cargas térmicas en un edificio de oficinas en EES ..... 52
Figura 7.2 Demanda de potencia térmica anual en cada zona analizada ......................... 53
Figura 7.3 Temperatura al interior y potencia térmica solicitada en a) Huasco y b) Calama . 54
Figura 7.4 Demanda energética mensual Valparaíso .................................................... 55
Figura 7.5 Demanda energética mensual Santiago ........................................................... 55
Figura 7.6 Potencia térmica para calefacción y enfriamiento en % .................................. 56
Figura 7.7 Temperatura interior y potencia térmica solicitada en Coyhaique ..................... 57
Figura 7.8 Horas al año de activación de los TABS en cada zona estudiada ...................... 58
Figura 7.9 Comparación entre potencia térmica requerida y horas operación de la bomba .. 59
Figura 7.10 Curva de temperatura de suministro del agua en función de la temperatura exterior y los factores de corrección CF ................................................................. 59
Figura 7.11 Comportamiento del sistema al ajustar la infiltración según la norma chilena. Caso: Temuco ........................................................................................................... 60
Figura 7.12 Temperatura interior y demanda térmica considerando aporte: a) sensible y latente b) sólo sensible ............................................................................................................. 61
Figura 10.1 Simulación de Temperatura del aire interior en Huasco para los períodos a) verano b) transición c) invierno ......................................................................................... 74
Figura 10.2 Simulación de Temperatura del aire interior en Calama para los períodos a) verano b) transición c) invierno ......................................................................................... 75
Figura 10.3 Simulación de Temperatura del aire interior en Salamanca para los períodos a) verano b) transición c) invierno ......................................................................................... 77
Figura 10.4 Simulación de Temperatura del aire interior en Valparaíso para los períodos a) verano b) transición c) invierno ......................................................................................... 78
Figura 10.5 Simulación de Temperatura del aire interior en Santiago para los períodos a) verano b) transición c) invierno ......................................................................................... 80
Figura 10.6 Simulación de Temperatura del aire interior en Puerto Montt para los períodos a) verano b) transición c) invierno ......................................................................................... 81
Figura 10.7 Simulación de Temperatura del aire interior en Temuco para los períodos a) verano b) transición c) invierno ......................................................................................... 83
Figura 10.8 Simulación de Temperatura del aire interior en Coyhaique para los períodos a) verano b) transición c) invierno ......................................................................................... 84
1. Introducción

En los últimos años, Chile ha asumido el desafío de mejorar la calidad ambiental en las distintas zonas del país a través del aumento de la eficiencia y el ahorro en el uso de la energía tanto a nivel de viviendas como en edificios. En estos últimos, el Programa País de Eficiencia Energética (PPEE) consideró la introducción de criterios de eficiencia energética en la construcción pública nueva, con la finalidad de establecer una línea base de consumo energético en el sector de edificios e identificar oportunidades de ahorro de energía. Como resultado de dichas acciones actualmente existe un número considerable de edificios públicos con estrategias de diseño pasivo e innovadores sistemas de calefacción y ventilación de alto rendimiento, pero a costa de una mayor inversión [1].

El requerimiento energético de un edificio puede variar de manera considerable dependiendo del clima local, su diseño, la calidad de los procesos constructivos, la gestión energética, etc. Además influyen aspectos inherentes a la ocupación del mismo como las características de los equipos e iluminación y el comportamiento de los usuarios, y las expectativas de confort térmico y calidad medioambiental en su interior. Todos estos sistemas actúan en forma dinámica, y deben ser considerados para establecer una relación entre el consumo y la calidad medioambiental de un edificio desde su diseño.

La búsqueda de nuevos conceptos para calefacción y refrigeración en edificios como alternativa a los sistemas convencionales ha hecho proliferar el desarrollo de alternativas de transmisión radiante, y el uso de la inercia térmica de los materiales estructurales de un edificio es un ejemplo de aquello.

Los Elementos Estructurales Térmicamente Activados (o TABS), incorporan la estructura del edificio como parte de la estrategia energética global del edificio desde la etapa de diseño. Elementos comunes en la construcción, como el hormigón y losas, son utilizados como almacenamiento de energía, cuyas superficies interactúan con el interior del recinto proporcionando refrigeración al absorber energía del ambiente interno o calentando el espacio a partir de la energía almacenada.

Este Trabajo de Título se ha desarrollado dentro del marco de una investigación multidisciplinaria en el proyecto “Análisis Sistémico de viabilidad de sistemas de
climatización TABS en Chile”. Nace como una respuesta a este creciente interés por investigar alternativas de mayor eficiencia en la edificación en Chile, en este caso, edificios para uso de oficinas. Éste trabajo pretende evaluar el comportamiento de esta tecnología en distintas zonas climáticas del país, estimando la demanda energética requerida para su funcionamiento, y su capacidad para brindar confort a sus ocupantes. Para ello es necesario realizar un análisis del funcionamiento de este sistema radiante, su interacción energética con el ambiente interior, observar cómo contribuye el almacenamiento térmico en la estructura del edificio en la amortiguación de la demanda energética y los parámetros que afectan el cumplimiento de las condiciones de confort al interior.

1.1 Objetivo General
Estará el potencial de implementación de sistemas de climatización mediante TABS en distintas zonas climáticas de Chile

1.2 Objetivos Específicos
Para cumplir con el objetivo general se establecen los siguientes objetivos específicos:

- Revisar el estado del arte relacionado con el cálculo de cargas térmicas en los TABS
- Identificar las zonas climáticas de Chile y recopilar sus datos meteorológicos durante un año
- Desarrollar un modelo paramétrico transiente que simule la carga térmica en un piso intermedio de un edificio de oficinas
- Determinar la demanda energética en cada zona analizada para cumplir con las condiciones de confortabilidad térmica al interior del edificio
- Proponer un sistema de control que permita el cumplimiento de las condiciones de confortabilidad térmica al interior del edificio
2. Estado del Arte

Hoy en día existe una amplia variedad de sistemas de acondicionamiento para edificios, como alternativa a los sistemas convencionales de HVAC se encuentran los sistemas de acondicionamiento cuyo intercambio de energía es principalmente en base a radiación. En ellos se disponen de amplias superficies calientes o frías que intercambian energía con el ambiente interior del recinto. En las instalaciones actuales habitualmente se trabajan con superficies emisoras a baja temperatura, utilizando la circulación de un fluido caloportador (habitualmente agua) caliente o frío a través de tuberías a temperaturas próximas al ambiente, siendo uno de los motivos por los cuales la investigación y uso de estas tecnologías se han hecho más prominentes.

A diferencia de los sistemas HVAC convencionales, cuyo intercambio de energía se realiza mayoritariamente por convección (fan coils, radiadores, etc), en los sistemas de acondicionamiento radiante el intercambio de energía a través de la radiación con el resto de las superficies del entorno constituye una importante fracción del total [2]. Cabe destacar que en la interacción energética de la superficie radiante con su entorno, la temperatura del aire interior no se ve afectada directamente por la radiación de dicha superficie, sino que al interactuar con el resto de superficies del recinto, el aire se calienta o enfriá en forma indirecta.

2.1 Tipologías de sistemas radiantes

Para realizar un análisis de sistemas radiantes es necesario conocer las tipologías existentes en la actualidad. Una de las formas de clasificar los sistemas radiantes es a través de su grado de acoplamiento térmico con los elementos estructurales, como también los tiempos de respuesta y su capacidad de almacenar energía.

2.1.1 Paneles Radiantes

Se trata de una malla de conductos situada generalmente en falsos techos, en configuraciones colgantes o fijas en las paredes de una habitación (ver Figura 2.1). Este sistema se caracteriza por un rápido tiempo de respuesta a las solicitudes de calefacción o refrigeración, prácticamente desacoplados con la estructura del edificio por lo que cuenta con una capacidad de acumulación baja. Uno de los inconvenientes que presenta este sistema es el riesgo de condensaciones debido a las bajas temperaturas al enfriar, pero tales
preocupaciones pueden ser solucionadas si se incorpora un sistema dedicado específicamente al tratamiento de la ventilación, reduciendo el riesgo de condensaciones significativamente en situaciones desfavorables.

Figura 2.1 Panel Radiante tipo S [3]

2.1.2 Sistemas Superficiales Embebidos
Esta tipología de acondicionamiento radiante es en la cual se clasifican los sistemas de suelo radiante. Estos sistemas se incorporan sobre la estructura del edificio pero están desacoplados térmicamente mediante una capa de aislamiento. Suelen estar incorporados dentro de una capa niveladora de mortero, o bien colocados bajo dicha capa sobre una capa de aislamiento (ver Figura 2.2 y Figura 2.3).

Figura 2.2: Sistemas Superficiales Embebidos según su posición [2]

Su utilización se centra principalmente para abastecer necesidades de calefacción, por lo que es de especial interés su utilización en edificios ubicados en zonas con climas fríos. Esta característica hace menos atractivo su uso en edificios de oficinas y comerciales, en los cuales predomina la demanda de refrigeración durante gran parte del año.
2.1.3 Forjados Activos o TABS

Este sistema está basado en tuberías de agua totalmente empotradas en la estructura del edificio, por lo que posee un fuerte acoplamiento térmico con el edificio y una gran capacidad de almacenamiento, pero a su vez un tiempo de respuesta lento. Dada esta cualidad de almacenamiento es posible separar la producción de la demanda energética, ya que la inercia térmica es capaz de amortiguar los cambios de temperatura al interior aun cuando el sistema no esté operando.
En general, las 3 tipologías mencionadas se diferencian en la forma de transmitir el calor desde el fluido caloportador a la superficie emisora. Sin embargo, en todos los casos pueden ser tratadas como amplias superficies frías o calientes que transfieren calor a través de convección y radiación, e interactúan con las superficies del entorno proporcionando cierta capacidad de absorción o disipación térmica. Algunas relaciones utilizadas [6] para calcular la densidad de flujo térmico \( q_i \), en base a la diferencia entre la temperatura superficial media \( T_s \) y la temperatura de diseño nominal \( T_o \), se muestran a continuación.

Suelo radiante o techo frío

\[ q_i = 8,92 \cdot (T_s - T_o)^{1,1} \]  \hspace{1cm} (1)

Techo caliente

\[ q_i = 6 \cdot (T_s - T_o) \]  \hspace{1cm} (2)

Suelo Refrescante

\[ q_i = 7 \cdot (T_s - T_o) \]  \hspace{1cm} (3)

En la simulación de sistemas de edificios, la transmisión desde el suelo se divide en la parte convectiva (entre la superficie acondicionada y la temperatura del aire interior) y radiativa (entre la superficie acondicionada y el resto de las superficies circundantes), por lo tanto el coeficiente numérico en las expresiones (1),(2) y (3) corresponde al coeficiente combinado de transferencia de calor sugerido.

Siendo dadas las tipologías existentes de acondicionamiento mediante un sistema radiante en un edificio, en los siguientes apartados se realizará una descripción en mayor detalle del sistema TABS, en el cual se centra este trabajo de título para posteriormente evaluar el comportamiento de esta tecnología en distintas zonas climáticas del país.

\section*{2.2 Sistemas TABS}

El sistema de acondicionamiento radiante basado en elementos estructurales activados, o forjados activos, ha sido denominado de diferentes maneras por diversos autores: TABS (Thermal Activated Building Systems), TACS (Thermo-Active Core Systems), TMA (Thermal Mass Activation), CCA (Concrete Core Activation), CCC (Concrete Core Conditioning); siendo TABS la denominación empleada durante este trabajo de título.

Los primeros trabajos científicos sobre TABS datan de 1993, en el cual se realizan consideraciones y medidas de diseño para un edificio de oficinas de 800 \( m^2 \) en Suiza y para un museo de 2400 \( m^2 \) en Austria. En estos trabajos, se eligió como sistema de acondicionamiento un sistema radiante basado en agua, que enfriara de manera nocturna la
masa térmica del edificio, con el fin de evitar el enfriamiento activo durante las altas temperaturas exteriores [5].

Los sistemas TABS consisten en mallas de conductos de agua directamente empotrados en el hormigón estructural del edificio, otorgando un fuerte acoplamiento térmico entre el sistema y el edificio. La circulación de agua caliente o fría a través de estos conductos acondiciona el núcleo de la masa térmica de la estructura, la cual es utilizada como almacenamiento térmico, siendo este sistema capaz disponerse en aplicaciones tanto de calefacción como refrigeración. Esta gran inercia térmica amortigua los cambios de temperatura al interior del recinto, reduciendo los peaks de demanda energética diaria influidos por la temperatura ambiental exterior.

![Diagrama de TABS](image)

**Figura 2.5. Distintas disposiciones de TABS según diseño del forjado [2]**

La temperatura de suministro del agua es relativamente próxima a la temperatura ambiental, siendo cercana a los 15°C para enfriamiento y a los 30°C para calefacción. Esto permite pensar que es un sistema con bajo requerimiento de energía y promete un sistema eficiente de calefacción y refrigeración [2].

Para analizar los TABS como una alternativa concreta para el acondicionamiento térmico de un recinto cerrado, es preciso considerar tanto los beneficios como desventajas de este sistema. Dentro de los beneficios en este sistema se puede considerar primeramente que al utilizar grandes superficies por las que se extienden los circuitos, permite que las temperaturas de trabajo del agua sean próximas al ambiente, lo que implica un bajo consumo de energía y la posibilidad de incorporar el uso de energías alternativas para proveerla [2]. La extensión de la superficie también beneficia proporcionando mayor uniformidad en la temperatura de todo el espacio, evitando estratificación de la temperatura que puede proporcionar disconformidad en los ocupantes.
Otra ventaja es que al utilizar la inercia térmica de la estructura, no es necesario que el sistema opere constantemente, o que deba funcionar en los horarios donde hay un peak de demanda energética. Por el contrario, el sistema funciona de forma activa o pasiva. Cuando circula agua por la red de tuberías empotradas, el sistema “activa” la estructura, la que a través del agua descarga la energía acumulada durante las horas de ocupación. Mientras que en las horas de funcionamiento “pasivo”, la gran inercia térmica del edificio regula la temperatura interior del recinto.

Debido a esta misma característica, es que podemos comenzar a encontrar desventajas a este sistema: Dada la gran inercia térmica de la estructura, hay que ser cuidadoso al escoger un sistema de control de la unidad, ya que el sistema tendrá una respuesta lenta en el caso de que se excedan los límites de la temperatura de confort en cierto instante. Otro de los aspectos que se deben considerar es que la reparación debido a posibles fugas en estos sistemas es complicada en comparación a otras alternativas, por lo que se debe tener especial cuidado en la instalación.

También pueden aparecer condensaciones debido a superficies demasiado frías. Si bien existen valores de referencia como temperatura límite (ver Tabla 6.6 en la pág. 49), el límite de temperatura superficial viene dado por la temperatura de rocío de cada situación en particular. Sin embargo, es posible controlar estas condensaciones de buena forma a través de un manejo adecuado del sistema de ventilación [7].

Hablando en términos energéticos, el sistema TABS interactúa con el interior del recinto mediante el piso y el techo. La transferencia de calor entre el hormigón y la zona de ocupación, en el caso de la convección depende de la diferencia de temperatura de la superficie del TABS y el aire interior; y entre la superficie del TABS y el resto de superficies circundantes para la transferencia de calor por radiación. Además, todo comienza con la transferencia de calor entre el agua, el ducto y el núcleo de hormigón por conducción y convección.
El sistema TABS se dispone en mallas de aproximadamente 15 m$^2$, siendo necesario disponer de varios circuitos en cada planta para cubrir toda la superficie a climatizar. Para esto se debe fijar la longitud y separación entre los tubos obteniendo el área total cubierta por cada circuito.

### 2.3 Funcionamiento

Los sistemas TABS, dispuestos típicamente en suelos y techos en edificios de oficinas, pueden ser empleados tanto para calefacción como para refrigeración. Sin embargo, la alta carga interna en estos edificios de oficinas hace que comúnmente los sistemas TABS sean requeridos para enfriamiento del recinto a lo largo del año, por lo tanto, la forma genérica de los sistemas TABS está asociada a sistemas de enfriamiento a través de techos [2].

Tomando en consideración este predominio de cargas internas, en combinación con las externas (ver capítulo 3), se ha creado un modelo que caracteriza un ciclo de operación diaria típico (Figura 2.7) [8].
Durante las horas de ocupación, el TABS se carga producto de las cargas internas y externas, aumentando la temperatura de la losa. Al finalizar el horario de ocupación durante la tarde comienza el periodo de descarga del TABS evacuando el calor a través del agua circulante por los tubos, enfriando la losa hasta la temperatura adecuada para reiniciar el ciclo al día siguiente.

Como puede notarse en la Figura 2.7, la temperatura al interior del espacio es variable durante el transcurso de la jornada, teniendo un comportamiento creciente durante las horas de ocupación a un ritmo entorno a los 0.5 y 1 K/h, aunque pueden ser aceptables oscilaciones de hasta 4 K [2]. La variación de la temperatura está limitada por el cumplimiento de las condiciones de confortabilidad, siendo un intervalo admisible para la temporada de invierno/transición una variación de 5.5 °C y 7°C en verano (para un 10% de insatisfacción) [9].

Un modelo que represente el comportamiento de este sistema debe considerar aspectos como la capacidad de acumulación del sistema, su potencia máxima de disipación, períodos de funcionamiento, etc. Además, parámetros de diseño como la temperatura de impulsión del agua, flujo másico y el paso entre los tubos [8].
Otro aspecto que se ve involucrado debido al uso de la inercia térmica del edificio es la demanda energética. Se plantea que el uso de la inercia térmica permite una deslocalización temporal de la demanda de energía, permitiendo una producción de energía más uniforme y prolongada, sin estar sujeta a los peaks de carga de refrigeración. Esto favorece al tener la posibilidad de dimensionar equipos de generación de menor tamaño, requiriendo una menor potencia y con una operación fuera de los horarios punta, lo que permite acceder a mejores tarifas relacionadas al consumo eléctrico [2].

Figura 2.8. Esquema cualitativo de la reducción de cargas puntas con el uso de TABS [10]
2.4 Modelos de Control

Pese a las ventajas derivadas del uso de la inercia térmica del edificio, esto a su vez implica mayores dificultades a la hora de establecer estrategias de control capaces de brindar condiciones de confort en su interior. La respuesta lenta de los TABS ante posibles acciones de control (cierre/abertura de válvulas, variación en la temperatura de impulsión del agua, etc.) conlleva el riesgo de la ocurrencia de episodios de excesiva calefacción o enfriamiento, aumentando la disconformidad de los ocupantes y haciendo un uso ineficiente de la energía disponible para el suministro.

En este capítulo se presentan los criterios de confort térmico de los ocupantes en un edificio, siendo éstos la base para formular un modelo de control de los TABS. Posteriormente se presenta una visión general de la literatura existente sobre los modelos de control de los TABS, entre los cuales se distinguen por seguir estrategias de control convencionales y predictivas. Los temas presentados en las secciones anteriores serán utilizados en los siguientes capítulos como parte del modelo para evaluar el comportamiento del sistema TABS en el caso de estudio.

2.4.1 Criterios de Confort Térmico

Para desarrollar un modelo de control que mantenga las condiciones de confortabilidad al interior del recinto con TABS, es necesario definir los criterios de confort térmico que mantengan el bienestar de los ocupantes, tomando en cuenta que la temperatura interior no es constante durante el transcurso del día. Existen dos modelos principales: el modelo de confort estándar, y el modelo de confort adaptativo.

El modelo de confort térmico estándar asume que el edificio se mantendrá dentro de los límites de temperatura permitida. Entre estos modelos estándar, el modelo de confort térmico de Fanger [9] es ampliamente utilizado. Este modelo se basa en el cálculo de un equilibrio térmico entre el cuerpo humano y su entorno, utilizando parámetros para evaluar el malestar térmico mediante un porcentaje de personas insatisfechas (PPD). En la Figura 2.9 se muestra el porcentaje de ocupantes insatisfechos (PPD), basado en la ecuación de confort de Fanger, para un trabajo de oficina sedentario y diferentes tipos de ropa. Es posible deducir que dada las diferencias en la percepción entre una persona y otra, no se puede obtener una insatisfacción del 0%. Sin embargo, es posible fijar una tasa máxima de insatisfacción...
permitida [9], siendo un 6% o 10% apropiados para un espacio de oficinas, cuyos rangos de confort varían según la temporada y los hábitos de ropa (ver Tabla 2.1).

![Figura 2.9. Porcentaje de personas insatisfechas (PPD) para un rango de temperaturas y diferentes atuendos [9].](image)

Como sugiere la Figura 2.9, la confortabilidad de un espacio no depende de una temperatura interna constante, por lo que son admisibles fluctuaciones dentro de los límites sin perjuicio de la comodidad de los ocupantes. Este rango de temperatura admisible deja abierta la posibilidad a la búsqueda de optimización de sistemas, y en el caso de los TABS, otorga mayor libertad para desarrollar mecanismos de control.

Tabla 2.1. Rango de temperatura permisible para un máximo de insatisfacción de 6% y 10% respectivamente [9]

<table>
<thead>
<tr>
<th>Tipo de Ropa</th>
<th>Estación</th>
<th>Rango de confort °C (PPD máx 6%)</th>
<th>Rango de confort °C (PPD máx 10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaqueta</td>
<td>Invierno/Transición</td>
<td>21,0-23,0</td>
<td>20,0-24,0</td>
</tr>
<tr>
<td>Camisa manga larga</td>
<td>Invierno/Transición</td>
<td>23,0-24,5</td>
<td>21,5-25,5</td>
</tr>
<tr>
<td>Camisa manga corta</td>
<td>Verano</td>
<td>24,5-26,0</td>
<td>23,5-27,0</td>
</tr>
</tbody>
</table>

En segundo lugar, los modelos de confort adaptativos, suponen que los ocupantes interactúan con el medio ambiente que los rodea, adaptando sus conductas y expectativas con tal de encontrar el confort térmico. Acciones como la abertura o cierre de ventanas, subir o bajar persianas, encendido y apagado de ventiladores, y hasta modificaciones en el hábito de la
ropa utilizada por temporada. El enfoque adaptativo afirma que la zona de confort no es estática, sino depende de parámetros como la temperatura exterior media [11]. También se evalúa en función de las expectativas del cumplimiento de las condiciones de confort, pudiendo ser menos estrictas, lo que quiere decir que hay una mayor tolerancia a los cambios de temperatura.

Comparando ambos modelos en relación a su aplicación en los TABS, un modelo adaptativo supondría una reducción en el consumo de energía, ya que en estaciones cálidas permite una mayor temperatura operativa al interior. Sin embargo, estos modelos adaptativos no ofrecen un ahorro de energía real para un clima moderado, en un edificio de oficinas con carga de refrigeración para todo el año. Por lo que el modelo básico de confort térmico (ISO7730) es el adecuado para edificios de oficinas en climas moderados dominados por las cargas de refrigeración [5].

### 2.4.2 Modelos de control en TABS

Debido a la integración del uso de la masa del edificio como almacenamiento térmico, la estrategia de control y el diseño de un controlador juegan un papel fundamental para lograr alcanzar una confortabilidad térmica junto a un menor consumo de energía durante la operación. Diversos autores han realizado estudios sobre las estrategias de control para los TABS, las cuales se dividen principalmente en modelos de control convencionales y modelos de control predictivos.

#### 2.4.2.1 Estrategias de control convencionales

Un tipo de control convencial para un sistema radiante se lleva a cabo a partir del manejo coordinado de dos mecanismos: un control central que define una curva de la temperatura del agua en función de la temperatura exterior, y un control individual on/off en cada estancia que permite la circulación del agua en el circuito. Sin embargo, dado el comportamiento dinámico de los TABS el control individual no es tan efectivo, siendo recomendado disponer únicamente de un control central ocupado de definir la temperatura de impulsión del agua agrupando las distintas estancias según una adecuada zonificación (perfiles de uso, orientación, etc.), y puede o no, contar con una variable de zona como realimentación (feedback) al sistema de control. Un controlador con realimentación on/off cuenta comúnmente con una banda muerta de temperaturas que evita las oscilaciones entre el funcionamiento de calefacción y enfriamiento [5].
Un controlador simple de realimentación encendido/apagado es útil para obtener información importante sobre el comportamiento de los TABS bajo distintas condiciones. Sólo es requerida la curva de calefacción/enfriamiento, basada en un modelo de construcción TABS en estado estacionario. Bajo este sistema, es posible obtener un sistema bien controlado sin hacer uso de estrategias de control que requieran modelos complejos, realizando un análisis de la respuesta del edificio ante distintos ajustes del controlador hasta encontrar una buena combinación capaz de satisfacer las necesidades de confort térmico al interior del recinto [5].


Güntensperger [12] define una curva de temperatura de suministro, dependiente de la temperatura exterior, en combinación con el control del tiempo de funcionamiento de la bomba. Para corregir la temperatura de suministro calculada añade a la temperatura ambiente del edificio, la temperatura del núcleo de hormigón.

Olesen [13] propuso mantener constante la temperatura del núcleo de hormigón a 22°C como una estrategia de control para edificios con baja carga de calefacción y enfriamiento, aprovechando el efecto auto-regulador del edificio para mantener las condiciones interiores.

En la misma línea, investigadores de los laboratorios EMPA (Swiss Federal Laboratories for Materials Testing and Research) junto a Siemens Building Technologies, en Suiza, presentaron un modelo que representa una referencia en el ámbito de control de TABS. El método denominado UBB (Unknown-But-Bounded) plantea una combinación de una curva de calentamiento y enfriamiento dependiente de la temperatura exterior, una realimentación opcional de la temperatura interior y un control opcional de la bomba, todo esto basado en las resistencias térmicas del TABS (método detallado en el trabajo de Soubron [5]).

Este diseño tiene un enfoque integrado que no requiere el uso de trabajos de simulación intensivos. Así, el perfil de ganancias y pérdidas en el edificio, el cual varía en función del tiempo debido a la inercia térmica, puede ser reemplazado por una estimación de valores límites superiores e inferiores constantes para las ganancias de calor (internas y externas), los cuales se integran en la formulación de la curva de calefacción y refrigeración, que relaciona la temperatura exterior con la temperatura de suministro de agua.
Por último, también se ha analizado el uso de la modulación de la amplitud de pulsos (Pulse Width Modulation, PWM), cuyo propósito de mejorar la eficiencia energética del TABS se basa en una impulsión de agua que ya no es continua, sino intermitente durante el ciclo de operación cediendo o absorbiendo energía de la losa. Esto supone una variación al modelo convencional de funcionamiento de la bomba durante periodos nocturnos, siendo esta una de varias opciones disponibles (ver Figura 2.10). De esta forma, los periodos en los cuales trabajan las bombas pueden ser determinados a partir de los correspondientes balances de energía.

![Figura 2.10. Modos de operación de TABS: a) Funcionamiento continuo de la bomba. b) Funcionamiento de la bomba durante la noche. c) Funcionamiento cíclico continuo de la bomba. d) Funcionamiento cíclico discontinuo de la bomba](image)

2.4.2.2 **Estrategias de control predictivas**

Otra manera de ejercer un control óptimo sobre el sistema es aplicando un Modelo basado en el Control Predictivo (MPC). Este tipo de control incorpora un modelo dinámico del ediﬁcio, tomando en cuenta parámetros como la temperatura exterior, la radiación solar o las ganancias externas, con el fin de predecir el comportamiento futuro de las condiciones interiores del ediﬁcio. Este tipo de controlador permite deﬁnir una trayectoria óptima de los parámetros de entrada del sistema, como la temperatura de suministro del agua, con el fin de minimizar la función del consumo de energía y maximizar el confort térmico.

Este modelo permite explotar explícitamente el comportamiento dinámico de un TABS y la construcción con el fin de optimizar la operación respecto al uso de energía y el costo de la
inconformidad. Una alternativa a un controlador convencional es resolver esta tarea como un problema de control óptimo (OCP) [5].

Al tomar la estrategia de control óptima, el funcionamiento del sistema se determina a través de la resolución de un problema de control óptimo en cada paso de tiempo. Para ello se utiliza un modelo de sistema dinámico, con información actualizada y una predicción de las perturbaciones de los parámetros involucrados como por ejemplo, predicción meteorológica y predicción de ocupación, etc. Con ello se produce un perfil de entrada de parámetros como la temperatura de suministro de agua, que minimice la función de coste dada.

El procedimiento consta de las siguientes etapas: (i) Retroalimentación de los datos medidos en la zona de oficinas hacia el MCP para determinar el estado de la zona, (ii) setpoints y predicción de las perturbaciones en el horizonte de predicción, (iii) resolver el problema de control óptimo (OCP), (iv) retornar las variables de salida (outputs) calculadas hacia los controladores de producción y distribución de calor y frío del edificio para ejecutar la acción de control para el horizonte de control [5].

2.4.2.3 Comparación de ambos modelos
Respecto a las formas de controlar el TABS a través de controladores convencionales y modelos de controlador predictivo (MPC), el controlador convencional se basa a menudo en un enfoque de ensayo y error de acuerdo a un conjunto limitado de parámetros, observando los resultados globales como respuesta a distintos ajustes del controlador, sin tener en cuenta la respuesta dinámica del TABS en las acciones aplicadas. Por otro lado, el controlador predictivo toma en cuenta la respuesta dinámica del TABS y predice las posibles perturbaciones en un horizonte de predicción, resolviendo un problema de controlador óptimo para ejecutar acciones que logren un equilibrio entre el uso de energía y el confort térmico.

Sin embargo, un análisis detallado de un controlador convencional puede entregar valiosa información sobre el comportamiento del TABS y las propiedades que debe tener un controlador óptimo. Por lo tanto, resulta de mayor conveniencia implementar un controlador convencional en el caso de estudio de este trabajo de título, cuyo objetivo no es optimizar la implementación de un sistema TABS sino establecer líneas generales de su funcionamiento, modelos de control y comportamiento en diversos climas.
3. Cargas Térmicas en un Edificio

El cálculo de la carga térmica en un espacio interior es la base principal en el diseño de los sistemas de acondicionamiento térmico, en él se identifican los flujos de calor en un recinto (ver Figura 3.1). Estos cálculos influyen en el dimensionamiento de equipos, tuberías, flujos máscicos y temperatura del fluido caloportador (en el caso de TABS) y todos los demás componentes de sistemas involucrados en el acondicionamiento térmico. En palabras simples, la carga de calefacción y enfriamiento son las tasas de energía de entrada (para calefacción) y de salida (para enfriamiento) requeridas para mantener un ambiente interior dentro de los parámetros de confortabilidad deseados de humedad y temperatura.

La tasa de energía para calefacción o enfriamiento necesaria para mantener las condiciones de confortabilidad al interior del recinto en un momento dado es variable, ya que depende de factores tanto externos (temperatura exterior, radiación, etc) como internos (iluminación, equipos, ocupantes). Muchos de estos factores varían ampliamente en magnitud durante un período de 24 horas, pudiendo estar o no en fase, por lo que cada componente debe ser analizado de forma independiente para establecer la carga térmica total en un instante dado. Se hace necesario identificar cada uno de los componentes que involucra una carga térmica en el recinto y establecer una metodología para su cálculo.

![Figura 3.1. Flujos de calor en un edificio](image)

[14]
Éste capítulo detalla los elementos comunes involucrados en el cálculo de cargas térmicas al interior de un recinto, además de la metodología utilizada en cada una de ellas, dejando una propuesta para el cálculo de la carga térmica en un recinto. Las cargas térmicas estudiadas son: Ganancias Internas, Cargas a través de envolvente térmica, Ganancias a través ventanas y Cargas por ventilación e infiltración de aire.

3.1 Ganancias Internas

La ganancia de calor interna puede clasificarse en sensible o latente. En este caso el sistema se encargará solo de las cargas sensibles, mientras que las cargas latentes deberán ser asumidas controladas por el sistema de ventilación.

Las ganancias de calor internas pueden contribuir a la mayoría de la carga de refrigeración en un edificio. En este caso, las ganancias internas provienen de la iluminación, los equipos utilizados y la ocupación del recinto.

3.1.1 Ocupación

Las personas al interior de un espacio contribuyen a las cargas internas debido al calor sensible y latente emitido por los seres humanos en los distintos estados de actividad. En este caso, como corresponde a un edificio de oficinas, hay una alta densidad de personas por lo que las ganancias de calor pueden contribuir una gran parte de la carga total. En la Tabla 3.1 se muestran algunos ejemplos del calor sensible y latente emitido por las personas según su actividad.

<table>
<thead>
<tr>
<th>Grado de actividad</th>
<th>Lugar</th>
<th>Calor sensible</th>
<th>Calor latente</th>
<th>Calor Total [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad moderada de oficina</td>
<td>Oficinas</td>
<td>75</td>
<td>55</td>
<td>130</td>
</tr>
<tr>
<td>Trabajo liviano</td>
<td>Industria</td>
<td>110</td>
<td>185</td>
<td>295</td>
</tr>
<tr>
<td>Trabajo Pesado</td>
<td>Industria</td>
<td>170</td>
<td>255</td>
<td>425</td>
</tr>
</tbody>
</table>

3.1.2 Iluminación

La iluminación a menudo puede ser un componente importante en las cargas internas de un edificio, por ello se requiere hacer una estimación de la ganancia de calor que esta proporciona en un espacio determinado. Para un espacio cuyos planos de iluminación finales
no están disponibles, es posible realizar una estimación a partir de una ganancia de calor estimada por metro cuadrado. La Tabla 3.2 muestra la densidad de potencia máxima de iluminación (LPD) permitida por la norma ASHRAE 90.1-2010 para espacios utilizados como oficinas.

Tabla 3.2. Densidad de energía de iluminación [15]

<table>
<thead>
<tr>
<th>Tipos de Espacios Comunes</th>
<th>LPD [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficinas Cerradas</td>
<td>10,5</td>
</tr>
<tr>
<td>Oficinas Abiertas</td>
<td>8,1</td>
</tr>
</tbody>
</table>

### 3.1.3 Equipos

Los equipos de oficina como computadores, impresoras, fotocopiadoras, monitores, etc., también contribuyen en la generación de ganancias internas, por lo cual es importante estimar su aporte de energía térmica. Uno de los métodos para estimar el aporte térmico de los equipos es estableciendo una ganancia de calor por unidad de área. La Tabla 3.3 presenta una serie de factores de carga utilizados según los equipos en cada estación de trabajo y una descripción del tipo de espacio en el que se aplicaría.

Tabla 3.3. Factores de carga recomendados para varios tipos de oficinas [15]

<table>
<thead>
<tr>
<th>Tipo de uso espacio</th>
<th>Factor de Carga [W/m²]</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Notebook</td>
<td>3,55</td>
<td>11,6 m²/estación de trabajo, 1 impresora cada 10 personas, otros.</td>
</tr>
<tr>
<td>Uso Medio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% Notebook</td>
<td>5,38</td>
</tr>
<tr>
<td></td>
<td>50% Computador de escritorio</td>
<td>5,38</td>
</tr>
<tr>
<td></td>
<td>Uso Medio</td>
<td></td>
</tr>
<tr>
<td>100% Computador de escritorio</td>
<td>8,61</td>
<td>11,6 m²/estación de trabajo, 1 impresora cada 10 personas, otros.</td>
</tr>
<tr>
<td>Uso Medio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finalmente, la carga térmica por ganancias internas \( q_{ig} \) se calcula mediante la ecuación:

\[
q_{ig} = q_{ocupación} + q_{iluminación} + q_{equipos}
\] (4)
3.2 Envolvente Térmica

El flujo de energía en la envolvente térmica se da a través de los elementos perimetrales que separan el recinto del ambiente exterior o espacios no acondicionados, en este caso se trata de muros y ventanas. En este flujo de energía intervienen los tres mecanismos de transferencia de calor: conducción, convección y radiación.

La conducción no interviene directamente en la interacción de la superficie del sistema con su entorno, pero sí en la transferencia de calor a través de medios sólidos como muros y ventanas. La conducción unidimensional en estado estacionario se plantea a través de la Ley de Fourier en la ecuación (5)

\[ q_{\text{cond}} = -kA_c \frac{\partial T}{\partial x} \ [W] \]

Una de las formas de interacción energética entre la superficie interior de la envolvente con su entorno es a través de la convección natural. Esta se debe al movimiento de aire provocado por diferencias de temperatura del fluido en un espacio y se da con bajas velocidades de aire. En el caso de la superficie externa, se da una convección forzada, que a diferencia del caso anterior, se da con mayores velocidades de flujo de aire provocado por un agente externo, como lo es el viento circundante al edificio.

Para ambos casos, el flujo de calor por convección se puede determinar a través de la ley de enfriamiento de Newton en la ecuación (6), que relaciona un coeficiente convectivo \( h_c \), la superficie de intercambio \( A_c \), y la diferencia de temperaturas entre la superficie \( T_s \) y el fluido sin perturbar \( T_\infty \)

\[ q_{\text{conv}} = h_c A_c (T_\infty - T_s) \ [W] \]

El intercambio de energía por radiación con el entorno también debe ser considerado tanto en la superficie interna como en la externa, recibiendo un tratamiento específico en cada caso debido a que interactúan con distintos elementos.

En la superficie externa el intercambio radiativo que se da entre la pared y su entorno puede subdividirse entre la radiación que emite y absorbe la superficie en su interacción con el sol y
con la atmósfera terrestre. De esta manera la velocidad neta de transferencia de calor por radiación a una superficie expuesta a la radiación solar y atmosférica se determina en base al balance de energía

\[ q_{\text{neta, rad}} = (E_{\text{solar}} + E_{\text{cielo}})_{\text{absorbida}} - (E_{\text{superficie}})_{\text{emitida}} \left[ W/m^2 \right] \]  

(7)

Dentro de la atmósfera terrestre, las moléculas de gas y partículas suspendidas emiten radiación y la absorben, por lo que es conveniente tratar la atmósfera como un cuerpo negro a una temperatura ficticia más baja que emite una cantidad equivalente de energía de radiación. A esta temperatura se le llama temperatura efectiva de cielo \( T_{\text{cielo}} \) (ver su cálculo en Anexos [16]). Como \( T_{\text{cielo}} \) es semejante a la temperatura ambiental, se utiliza la Ley de Kirchoff para asumir la absorptividad de una superficie igual a su emisividad \( \alpha = \varepsilon \) a la temperatura ambiente. De esta manera la radiación absorbida por la pared se determina mediante la ecuación

\[ E_{\text{cielo}} = \varepsilon \cdot \sigma \cdot T_{\text{cielo}}^4 \left[ W/m^2 \right] \]  

(8)

La energía solar que absorbe el elemento viene dado por la irradiancia solar que llega a ese plano inclinado \( G_{\text{solar}} \) y la absorptividad del material \( \alpha_s \)

\[ E_{\text{solar}} = \alpha_s G_{\text{solar}} \left[ W/m^2 \right] \]  

(9)

El último término de la ecuación (7) se obtiene calculando la potencia emisiva de una superficie con su temperatura \( T_s \)

\[ E_{\text{emisiva}} = \varepsilon \cdot \sigma \cdot T_s^4 \left[ W/m^2 \right] \]  

(10)

En el caso de un muro vertical, como lo es el caso de estudio en este trabajo, se considera además que la superficie externa ve sólo la mitad de la bóveda celeste, recibiendo radiación solar y atmosférica, a su vez interactúa con superficies y moléculas a temperatura ambiente
Esta interacción se realiza en forma equitativa utilizando un factor de visión \( F_{ij} = 0,5 \) para cada caso, lo que implica que la superficie ve el cielo y ve superficies a temperatura ambiente en igual proporción. Agregando estas consideraciones y reemplazando las ecuaciones (8), (9) y (10) en (7), se obtiene finalmente la transferencia neta por radiación mediante la ecuación (11)

\[
\dot{q}_{\text{net, rad}} = \alpha_s G_{\text{solar}} + F_{12} \varepsilon \sigma (T_{\text{cielo}}^4 - T_S^4) + F_{13} \varepsilon \sigma (T_\infty^4 - T_S^4) \left[ \frac{W}{m^2} \right]
\]

(11)

En el caso de la superficie interior del muro, la transferencia neta de calor por radiación se calcula para cada superficie \( i \) en su interacción con las \( n \) superficies restantes del recinto a través de la relación

\[
q_i = A_i \sum_{j=1}^{n} F_{ij} (J_i - J_j) \left[ W \right]
\]

(12)

Donde \( J_i \) es la radiosidad de la superficie en \( (W/m^2) \) y \( F_{ij} \) es el factor de visión entre las superficies \( i \) y \( j \).

Además, suponiendo cada superficie del recinto como isotérmica y caracterizada por una radiosidad e irradiación uniformes, como también un comportamiento de cuerpo gris, entonces la transferencia neta de calor por radiación se puede expresar como

\[
q_i = \varepsilon_i \cdot A_i \cdot \left[ \frac{E_{b,i} - J_i}{1 - \varepsilon_i} \right]
\]

(13)

Donde \( E_{b,i} \) es la potencia emisiva de un cuerpo negro a la temperatura \( T_i \), y \( \varepsilon_i \) es la emisividad de la superficie y su calcula a partir de la ecuación (14).

\[
E_{b,i} = \sigma \cdot T_i^4 \left[ \frac{W}{m^2} \right]
\]

(14)
De esta manera, la red de resistencias térmicas en los muros queda caracterizada como lo muestra la Figura 3.2

![Diagrama de resistencias térmicas](image)

**Figura 3.2.** Red de resistencias Térmicas entre la temperatura interior y exterior del recinto [17]

Calculando así el coeficiente total de transferencia de calor $U$ de los muros de la envolvente térmica para obtener el flujo de calor neto a través de la envolvente térmica mediante la ecuación (15)

$$q_i = U_i \cdot A_i \cdot (T_{\text{int}} - T_{\text{ext}})[W]$$

La ecuación (15) también sirve para calcular el flujo de calor de la envolvente a través de las ventanas, cuyo coeficiente $U$ es obtenido a través de tablas según el tipo de vidrio utilizado. Así entonces, el flujo a través de la envolvente térmica queda determinado por

$$q_{\text{envolvente}} = q_{\text{muros}} + q_{\text{ventanas}} [W]$$

Considerar el flujo de calor a través de la envolvente térmica es fundamental a la hora de dimensionar los dispositivos de acondicionamiento térmico, ya que si el flujo es grande las cargas de calefacción/enfriamiento se incrementarán considerablemente en los meses fríos/cálidos, debiendo dimensionar equipos de mayor capacidad, disminuyendo la eficiencia del sistema.

### 3.3 Ganancia Solar a través de Ventanas

Las ventanas en un recinto pueden cumplir múltiples funciones a la hora de considerar la confortabilidad de los ocupantes en su interior, sirven como una conexión física/visual con el exterior, permiten el ingreso de la radiación solar otorgando iluminación natural y el ingreso
de calor al espacio. Además, si las ventanas son operables pueden contribuir a la ventilación natural.

En el aspecto energético, el ventanaje puede ser utilizado positivamente para reducir el requerimiento energético de un edificio usando la luz del día para reducir el consumo asociado a la iluminación. Otro aspecto que afecta energéticamente, el cual es abordado en este trabajo, es la ganancia de energía térmica a través de las ventanas, la cual ejerce su influencia sobre la carga de refrigeración en los meses de mayor temperatura. Por ello es importante predecir esta ganancia solar desarrollando un modelo que involucre la radiación solar incidente, el tipo de protección solar que se utilizará y el tipo de acristalamiento en cada orientación del recinto, ya que sus propiedades de superficie influyen en la absorción y transmisión de calor hacia el interior del espacio.

La ecuación que define el flujo de calor hacia el interior del recinto a través de las ventanas según ASHRAE [15] es

\[
\dot{q}_{vent} = G_B \cdot SHGC_B \cdot IAC_B + G_D \cdot SHGC_D \cdot IAC_D \left[ \frac{W}{m^2} \right]
\]

Donde \( SHGC_{B,D} \) es el coeficiente de ganancia solar (solar heat gain coefficient) por radiación directa (beam) y difusa (diffuse), \( G_{B,D} \) es la irradiancia solar incidente directa y difusa en el plano inclinado e \( IAC_{B,D} \) es el coeficiente de atenuación interior (indoor solar attenuation coefficient).

El coeficiente de ganancia solar \( SHGC \) representa la fracción de la energía proveniente de la radiación solar incidente en el ventanaje que fluye hacia el interior del recinto, a su vez, este coeficiente nace a partir de la suma de la fracción de la energía que se transmite al interior (transmitancia T) y la fracción de flujo de calor hacia el interior de la energía absorbida por cada capa de acristalamiento

\[
SHGC = T + \sum_{k=1}^{L} N_k A_k
\]
Donde $A_k$ es la fracción de radiación absorbida por cada capa y $N_k$ es la fracción de flujo hacia el interior, este depende de las propiedades térmicas del material y la reflectancia $R_k$ entre cada capa

$$N_k = U \cdot \sum R_k$$  \hspace{1cm} (19)

Por otra parte, como se puede ver en la ecuación (17), para calcular $q_{vent}$ se debe hacer la distinción entre la radiación incidente en forma directa $G_B$ y difusa $G_D$ en un plano inclinado.

Para realizar este cálculo a partir de mediciones de radiación total incidente en un plano horizontal $G_{Th}$, se debe calcular un índice de claridad por hora $k_t$

$$k_t = \frac{G_{Th}}{G_o} \left[ - \right]$$  \hspace{1cm} (20)

Donde $G_o$ representa la radiación extraterrestre en un plano horizontal (cálculo realizado mediante método propuesto en la referencia [18]). De esta manera, es posible obtener un índice $F_{dif}$ que represente la fracción de radiación difusa respecto a la radiación global en el plano horizontal a través de la relación empírica:

$$F_{dif} = \begin{cases} 
1,0 - 0,09 \cdot k_i & | k_i \leq 0,22 \\
0,9511 - 0,1604 \cdot k_i + 4,388 \cdot k_i^2 - 16,638 \cdot k_i^3 + 12,336 \cdot k_i^4 & | 0,22 < k_i \leq 0,8 \\
0,165 & | k_i > 0,8 
\end{cases}$$  \hspace{1cm} (21)

Además, es necesario convertir estos datos de radiación global horizontal a una superficie inclinada como lo es el caso de ventanas verticales ($\beta = 90^\circ$). Tomando también en consideración la ecuación (21), la expresión para calcular la radiación directa en un plano inclinado $G_{Bt}$ queda de la siguiente forma

$$G_{Bt} = (1 - F_{dif})G_{Th} \cdot \frac{\cos \theta_i}{\cos \Phi} \left[ \frac{W}{m^2} \right]$$  \hspace{1cm} (22)

Donde $\theta_i$ representa el ángulo de incidencia de los rayos solares, que dependen de la orientación de la ventana, y $\Phi$ el ángulo de zenit
Mientras que la radiación difusa en un plano inclinado se calcula como

\[
G_{\text{Di}} = (F_{\text{dif}} \cdot G_{\text{Th}}) \cdot \left[ \frac{1 - \cos(\beta)}{2} \right] \cdot \left[ \frac{W}{m^2} \right]
\]  
(23)

Con el objetivo de disminuir las cargas de refrigeración, o sea reducir el flujo de energía hacia el interior del recinto, se utilizan dispositivos que puedan excluir parte de la energía que llega a las ventanas a través del sombreado. El tercer término de la ecuación (17), el coeficiente \( IAC \), y representa la fracción del flujo de calor que finalmente ingresa al recinto. Las sombras pueden ser generadas a través de persianas interiores o exteriores, en orientación vertical u horizontal; o también a través de cortinas. El coeficiente \( IAC \) puede ser determinado la ecuación (24)

\[
IAC = IAC_0 + (IAC_{60} - IAC_0) \cdot \frac{\min(\Omega; 60)}{60}
\]  
(24)

Donde los coeficientes \( IAC_0 \) y \( IAC_{60} \) están tabulados según el tipo de acristalamiento, la ubicación, la reflexión y el ángulo de inclinación de la persiana [15]. Mientras que \( \Omega \) representa el ángulo de sombra y depende de los ángulos de altura solar \( \alpha \) y azimut solar \( \gamma \) a través de la ecuación

\[
\tan \Omega = \frac{\tan \alpha}{\cos \gamma}
\]  
(25)
Como se pudo apreciar en la ecuación (17), las ganancias térmicas a través de las ventanas obedecen a múltiples variables como la radiación solar en la zona, la cual varía a lo largo del día, el tipo de acristalamiento en cada una de las orientaciones de las ventanas y la protección solar que se desee colocar para disminuir las cargas de enfriamiento dentro del recinto, y así disminuir las ganancias térmicas en los periodos de mayor radiación.

3.4 Ventilación e Infiltración

Mantener las condiciones de confortabilidad y calidad del aire al interior de un recinto también incluye el control de contaminantes, la renovación del aire sucio e impulso de aire limpio desde el exterior hacia el interior del recinto. Para este propósito es utilizado el aire exterior que fluye hacia dentro del recinto diluyendo y eliminando contaminantes del aire interior. Sin embargo, es necesario acondicionar este aire exterior que se incorpora, lo cual comprende un aumento en la carga total del edificio que según el caso, puede llegar a ser una parte significativa de la carga total del espacio acondicionado. Por lo tanto, es importante que la magnitud del flujo de aire fresco sea conocida.

El intercambio de aire entre el recinto y el aire exterior se puede clasificar en dos categorías: la ventilación y la infiltración, que corresponden a modos de renovación de aire en forma controlada y no controlada respectivamente.
3.4.1 Ventilación

La ventilación trata de la introducción deliberada de aire desde el exterior hacia el interior de un recinto. Esta se puede dar de forma natural, mecánica o híbrida.

La ventilación natural se da a través de ventanas abiertas, rejillas de ventilación o cualquier otra abertura premeditada situada en la envolvente local, en ella el flujo de aire se produce a través de diferencias de presión en forma natural. En cambio, en la ventilación mecánica el movimiento de aire se da a través de sistemas mecánicos como ventiladores y extractores de aire.

La tasa de ventilación aplicada para este edificio corresponde a la Clase 2 en EN 15251 [20] que recomienda una renovación de aire de $43,2 \, m^3/h \cdot pers$. De esta manera, el flujo de aire debido a la ventilación $Q_{vent}$, es calculado a través de la ecuación (26)

$$Q_{vent} = 43,2 \cdot N_{oc} \left[ \frac{m^3}{h} \right]$$  \hspace{1cm} (26)

Donde $N_{oc}$ es el número de ocupantes del recinto.

3.4.2 Infiltración

La infiltración se trata de un flujo de aire que desde el exterior ingresa al interior de un recinto a través de grietas y aberturas que no han sido colocadas intencionalmente en la envolvente. La infiltración es producida por diferencias de presión interior/exterior por efecto del viento y diferencias de temperatura interior/exterior.

En la envolvente de un edificio, las fugas de aire pueden ser medidas a través de una prueba de presurización (pressurization testing). En este procedimiento, un gran ventilador o soplador es montado en una puerta o ventana para inducir una diferencia de presión más o menos uniforme a través de la envolvente del edificio, a continuación, se mide el flujo de aire requerido para mantener esta diferencia de presión, realizando esta prueba para una serie de diferencias de presión. El resultado de esta prueba consiste en una curva con varias combinaciones de velocidad de flujo de aire y diferencias de presión que caracterizan la fuga de aire de un edificio [21]. En general la forma de la función obtenida depende de la
geometría de la abertura. Sin embargo, cada abertura en la envolvente de un edificio puede ser descrita por la ecuación (27)

\[ Q_{inf} = c(\Delta p)^n \left[ \frac{m^3}{h} \right] \]  \hspace{1cm} (27)

Donde \( Q_{inf} \) es el flujo de aire, \( c \) es un coeficiente de flujo y \( n \) el exponente de flujo, cuyo valor típico es aproximadamente 0,65 [15]. Además, para calcular la tasa de aire filtrado también es posible utilizar la ecuación (28) que caracteriza flujos a través de orificios:

\[ Q_{inf} = C_d \cdot A_L \cdot \sqrt{\frac{2\Delta p}{\rho}} \]  \hspace{1cm} (28)

En la cual \( C_d \) es el coeficiente de descarga asumido como 1, \( A_L \) representa el área efectiva de fuga en la envolvente y \( \Delta p \) la diferencia de presión interior y exterior (4 Pa y 10 Pa son presiones de referencia defendidas porque son presiones que realmente inducen una renovación del aire [15].

Finalmente, la carga térmica que aporta la ventilación e infiltración se calcula mediante la ecuación (29)

\[ q_{vi} = (Q_{inf} + Q_{vent}) \cdot \rho \cdot c_p \cdot \Delta T \ [W] \]  \hspace{1cm} (29)

En edificios comerciales, de oficinas, o institucionales, normalmente los sistemas de ventilación mecánica además de ayudar a la renovación del aire interior, ayudan a presurizar el aire con el objetivo de reducir o eliminar las infiltraciones. Es por esto que la ventilación mecánica tiene un gran potencial de controlar las renovaciones de aire interior (controladas y no controladas). Si bien la infiltración contribuye a las renovaciones de aire, útiles para reducir la cantidad de contaminantes al interior del recinto, al no ser intencionales (por tanto, no controladas) suponen una gran pérdida de energía que debe ser compensada por los sistemas de acondicionamiento térmico.

Una vez presentado el modelo para calcular las cargas térmicas sensibles en un edificio de oficinas, en el siguiente capítulo se presentará un modelo que representa la transferencia de calor en los TABS, para finalmente implementar un sistema de control que permita mantener las condiciones de confortabilidad térmica al interior del recinto.
4. Transferencia de calor en TABS

Una vez estudiados los fundamentos de la transferencia de calor involucrada en la carga térmica del edificio, resulta de gran interés emplear estas herramientas para conocer las particularidades de la transferencia de calor desde el agua del circuito hasta la losa o viceversa, o sea, comprender la dinámica de su comportamiento térmico, y en definitiva extraer conclusiones de utilidad para afrontar la integración de los TABS en la estrategia energética global del edificio.

Como ya se ha mencionado anteriormente, a diferencia de los sistemas de paneles radiantes de baja inercia, el estudio de los TABS requiere que se consideren aspectos de su comportamiento tanto estacionarios como transientes debido a la acumulación térmica en el hormigón. El modelo estacionario permitirá conformar una de red de resistencias térmicas que caracterice la transferencia de calor desde el agua hasta la losa. Mientras que el modelo transiente permitirá integrar los efectos de la acumulación térmica en el hormigón, y evaluar las diferencias entre un comportamiento activo y pasivo en los TABS.

Una vez integrado el modelo transiente en los TABS y calculando los flujos de calor a través del techo y suelo, se puede integrar al modelo de las cargas térmicas para conocer su impacto en la regulación de la temperatura del aire interior del recinto, lo cual es abordado al final de este capítulo.

4.1 Modelo en Estado Estacionario EMPA

Estrictamente hablando, el proceso de transferencia de calor al interior de los TABS se trata de un complejo problema en 3D, sin embargo, desde un punto de vista práctico no es necesario realizar un modelo de temperaturas y flujo de calor con ese nivel de detalle. Es posible utilizar herramientas más sencillas capaces de reproducir fielmente las variables de interés [2]. En este sentido, investigadores de EMPA han desarrollado un modelo en 1D de la transferencia de calor en los TABS.

Para comprender e implementar el modelo EMPA, la Figura 4.1 muestra los parámetros involucrados en el modelo de resistencias térmicas y la Tabla 4.1 muestra los valores utilizados en un módulo TABS típico de 15 $m^2$. Los tubos están situados al centro de la losa de hormigón para los resultados mostrados posteriormente.
Figura 4.1. Esquema de los parámetros de investigación en el TABS [5]

Se debe tener en consideración que el modelo EMPA sólo es válido para las siguientes condiciones

\[
\frac{d_i}{d_x} > 0,3 \quad (30)
\]

\[
\frac{d_{t,o}}{d_x} < 0,2 \quad (31)
\]

Con \(d_i\) siendo el espesor de la capa de hormigón sobre o bajo los tubos. Estas restricciones deben ser tomadas en consideración a la hora de diseñar los TABS. La segunda no causa problemas en las configuraciones de TABS reales, mientras que la primera debe considerarse en los casos donde los tubos empotrados se encuentran cerca de la superficie superior o inferior, sin embargo en este estudio no produce inconvenientes ya que el circuito se encuentra empotrado en el centro de la losa de hormigón.

Tabla 4.1. Parámetros en el estudio de la transferencia de calor en TABS

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{m}_w)</td>
<td>400 ([kg/hr])</td>
<td>Flujo másico de agua</td>
</tr>
<tr>
<td>(d)</td>
<td>0,32 ([m])</td>
<td>Espesor total del concreto</td>
</tr>
<tr>
<td>(d_x)</td>
<td>0,15 ([m])</td>
<td>Paso entre tuberías</td>
</tr>
<tr>
<td>(d_{t,i/o})</td>
<td>0,02 ([m])</td>
<td>Diámetro interior/exterior del tubo</td>
</tr>
<tr>
<td>(L_t)</td>
<td>100 ([m])</td>
<td>Longitud de una tubería considerada para un área de 15 (m^2) con un paso de 0,15 (m)</td>
</tr>
</tbody>
</table>
4.1.1 Resistentes Térmicas en el modelo TABS

A partir de la analogía eléctrica en transferencia de calor, es posible plantear el problema como una red triangular de resistencias desde la temperatura exterior del tubo $T_3$ hasta la temperatura de la estancia superior $T_1$ e inferior $T_2$ (ver Figura 4.3). A su vez, esta red se puede transformar a una red estrella equivalente, de aquí se puede introducir un nuevo parámetro $T_c$ que representa la temperatura del núcleo del hormigón (concrete core temperature).

De la Figura 4.3b, las resistencias térmicas $R_1$ y $R_2$ aluden a la transferencia de calor desde la temperatura del núcleo hacia la estancia superior e inferior y se calculan como
Donde $h_i$ que involucra la transferencia de calor por convección y radiación en la superficie.

La resistencia térmica $R_x$ define la diferencia de temperatura entre la superficie exterior del tubo y la temperatura del núcleo de concreto. Como se puede apreciar en la ecuación (33), esta resistencia es independiente del espesor del hormigón.

\[
R_x = \frac{d_x \ln \left( \frac{d_x}{\pi d_{x,0}} \right)}{2\pi \lambda_t}
\]  

(33)

Una vez planteada la red estrella, la cual llega hasta la temperatura de superficie del tubo, es necesario ampliarla hasta la temperatura del fluido que atraviesa el mismo. Esto se logra agregando las resistencias térmicas que definan la transferencia de calor por conducción a través de la pared del tubo $R_t$ y por convección forzada en su interior $R_w$

\[
R_t = \frac{\ln \left( \frac{d_{t,0}}{d_{t,i}} \right) d_x}{2\pi \lambda_t}
\]  

(34)

El cálculo de $R_t$ en la ecuación (34) corresponde a la resistencia térmica por conducción en una tubería y se calcula respecto al área neta de un módulo ($A_{net} = d_x \cdot L_t$), por lo tanto tiene unidades $[m^2K/W]$ y depende de los diámetros interior y exterior del tubo, como también del paso $d_x$ del circuito y de las propiedades físicas del material $\lambda_t$.

Por otra parte, el cálculo de la resistencia térmica por convección forzada $R_w$, entre la pared del tubo y el agua interior, se realiza a través de la relación de números adimensionales

\[
Nu_t = 0,023 \cdot Re_t^{0.8} \cdot Pr_t^{0.3}
\]  

(35)

\[
Nu_t = \frac{h_w \cdot d_{t,i}}{\lambda_t}
\]  

(36)
Siendo requeridas las características del flujo y propiedades del fluido (obtenidas a través del software EES [22]). Finalmente se calcula $R_w$ a partir de la ecuación (37)

$$R_w = \frac{1}{h_w}$$

Por último, el modelo EMPA además añade una resistencia adicional $R_z$ que relaciona la temperatura media del agua con la temperatura de suministro de la misma, y es función de la longitud del tubo y el caudal de agua en los tubos. Esto con el fin de considerar la variación de la temperatura del agua a lo largo del tubo. Su cálculo es realizado a través de un balance energético en un módulo TABS aplicando el enfoque de la temperatura media logarítmica $T_{mt}$. Finalmente el cálculo de $R_z$ se presenta en la ecuación

$$R_z = \frac{d_x \cdot L_t}{m_w \cdot c_p \cdot \left(1 - \exp \left(- \frac{d_x \cdot L_t}{R_k \cdot m_w \cdot c_p}\right)\right)} - R_k$$

Donde,

$$R_k = R_w + R_t + R_x + \frac{1}{U_1 + U_2}$$

Como se puede apreciar en la ecuación (38), la resistencia $R_z$, a diferencia del resto de las resistencias depende no sólo de $d_x$ y $m_w$, sino además de la longitud del módulo $L_t$. De esta manera, la red de resistencias completa queda como lo muestra la Figura 4.4.

Figura 4.4. Red de Resistencias Térmicas en TABS
4.2 Modelo en Estado Transiente

El estudio de estado transiente proporciona una caracterización del efecto de acumulación de energía en el hormigón. Además, permite analizar el efecto auto-regulador de los TABS, el efecto del encendido y apagado de la bomba, y el potencial de almacenamiento térmico. Es por ello que el modelo resistivo estacionario debe complementarse con un estudio que refleje la variación de los estados en función del tiempo.

El estado transiente además es fundamental para conocer el comportamiento del TABS como un sistema de acondicionamiento activo, cuando recibe o absorbe energía a través de un fluido caloportador que circula a una determinada temperatura; o como un sistema pasivo, capaz de intercambiar la energía acumulada a pesar de que no exista una circulación de fluido, y por ende no reciba un input de energía.

Para resolver el problema en estado transiente es tentador pensar en recurrir a la ecuación de conducción de calor unidimensional.

\[
\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \quad (40)
\]

Sin embargo, la ecuación (40) sirve para conocer la temperatura de un elemento diferencial en cierta posición en el eje x a un instante dado. En este caso no es necesario conocer la temperatura en cada posición, por lo que es posible simplificar este problema a una ecuación diferencial con un valor inicial de temperatura \(T_0\) cuya finalidad es conocer la temperatura de un elemento a un instante dado \(T_{t+1}\).

Para plantear el problema es necesario realizar un balance de energía en el interior del hormigón, considerando la energía que aporta el agua \(\dot{q}_w\), la energía que fluye hacia la estancia superior e inferior \(\dot{q}_1\) y \(\dot{q}_2\) respectivamente, y la variación de energía interna \(U\) (ver Figura 4.5)

\[
\dot{q}_w - \dot{q}_1 - \dot{q}_2 = \frac{\partial U}{\partial t} \quad (41)
\]
Que deriva finalmente en,

\[
\dot{q}_w - \dot{q}_{suelo} - \dot{q}_{techo} = m_c \cdot c \cdot \frac{\partial T_c}{\partial t}
\]  \(42\)

Cuya incógnita será la temperatura del núcleo \(T_c(t)\) a un instante dado.

Figura 4.5. Balance de energía y acumulación en el hormigón

Para resolver la ecuación (42) se ha recurrido al método numérico de Euler. Este método tiene por objeto obtener una aproximación de un problema bien planteado de valor inicial. La idea básica del método de Euler es aproximar la derivada mediante un cociente incremental

\[
y_{i+1} = y_i + h \cdot \frac{\partial y}{\partial x} (x_i)
\]  \(43\)

Donde \(h\) es el ancho de cada intervalo, que en este caso es la longitud de los pasos de tiempo. Llevando la ecuación (43) al problema de acumulación térmica se obtiene:

\[
T_{t+1} = T_t + \delta t \cdot \frac{\partial T}{\partial t}
\]  \(44\)

Que junto a la ecuación (42) pueden resolver el sistema para conocer la temperatura del núcleo de hormigón \(T_c\).
El método de Euler al ser un método de primer orden, tiene un error local que es proporcional al cuadrado del tamaño del paso $\delta t$, el cual está restringido por la frecuencia de las mediciones de datos utilizados para el modelo en las estaciones de monitoreo meteorológico.

Por último, para introducir en el esquema el comportamiento activo o pasivo del TABS, sólo es necesario asumir que cuando la bomba no está funcionando, no existirá aporte o extracción de calor por parte del agua, o sea $q_w = 0$ en la ecuación (42), y el hormigón acondicionará en forma pasiva debido a su energía interna. Mientras que cuando la bomba funciona, se activa la losa de hormigón, y el calor que intercambia el agua se puede calcular como

$$\dot{q}_w = \frac{(T_{ws} - T_c)}{R_c}$$

(45)

Donde $R_c$ es la resistencia equivalente desde la temperatura de suministro del agua hasta la temperatura del núcleo de hormigón.

### 4.3 Determinación de la Temperatura del aire interior $T_{ia}$

Finalmente, para conocer la temperatura del aire al interior del recinto $T_{ia}$ es necesario realizar un balance de energía, ahora para todo el espacio interior, tomando en cuenta las siguientes consideraciones:

- El resto de los muros también almacena energía, por lo tanto también son parte de la masa térmica.
- Las ganancias debidas a la energía solar que finalmente penetra a través de las ventanas se distribuye como calor que es recibido por el suelo (30%), el techo (7%) y el resto es tratado como ganancia de energía en el volumen de control.

Así, las ecuaciones que representan el aporte energético de los TABS son las siguientes:

$$q_{techo} = q_2 = q_{conv,2} + q_{rad,2} + 0,07 \cdot \alpha_{techo} \cdot q_{vent}$$

(46)

$$q_{suelo} = q_1 = q_{conv,1} + q_{rad,1} + 0,3 \cdot \alpha_{suelo} \cdot q_{vent}$$

(47)
Con $\alpha$ como la absorptividad del material. Entonces, aplicando nuevamente el método de Euler se calcula la temperatura del aire interior a través de las ecuaciones (48) y (49):

$$m \cdot c \cdot \frac{\partial T_a}{\partial t} = q_{envolvente} + q_{ig} + q_{vi} + 0,66 \cdot q_{vent} + q_{suelo} + q_{techo}$$

(48)

$$T_{a_{i+1}} = T_{a_i} + \delta t \cdot \frac{\partial T_a}{\partial t}$$

(49)

**4.4 Conclusión**

En este capítulo se ha presentado un modelo que define la transferencia de calor al interior de la losa de hormigón tanto en un funcionamiento activo del TABS (cuando circula el fluido caloportador por las tuberías), como en un funcionamiento pasivo, (la masa térmica acondiciona el interior del recinto sin la necesidad de una fuente o sumidero de energía). Para cumplir este cometido se combinó un modelo estacionario basado en resistencias térmicas y un modelo transiente que integra la acumulación térmica en el material.

Por otra parte, se definen las ecuaciones utilizadas para calcular la potencia térmica del TABS, o sea, la energía entregada a través del techo y el suelo de la losa en su intercambio energético con el aire (convección) y el resto de las superficies (radiación). También se entregan las ecuaciones utilizadas para calcular el calor intercambiado por el agua de suministro con la losa, cuya dependencia del flujo másico y temperatura de suministro constituyen parámetros a tomar en cuenta en las estrategias de control.

Por último, se utilizan las ecuaciones expuestas en este capítulo en complemento con lo presentado en el capítulo de Cargas Térmicas en un Edificio, para presentar un modelo integral basado en un balance de energía general al interior del recinto, capaz de mostrar la variación de la temperatura del aire al interior en función de los datos de entrada (temperatura del aire exterior y radiación solar) en cada paso de tiempo, siendo esto la base para estudiar el comportamiento de los TABS y evaluar un sistema de control capaz de mantener las condiciones de confortabilidad al interior del recinto.
5. Modelo de Control Convencional en TABS

Tal como se ha mencionado anteriormente, una estrategia convencional de realimentación de on/off no es manera más óptima para controlar el TABS, sin embargo es posible realizar un análisis del rendimiento del controlador bajo distintos ajustes, lo cual proporciona una valiosa información sobre el comportamiento transiente del TABS y sobre las características requeridas de un controlador TABS. En este capítulo se abordarán detalles más técnicos sobre la implementación de un sistema de control convencional.

La estrategia de control on/off con realimentación está basada en una temperatura continuamente medible $T_{controlled}$, que no depende del funcionamiento de la bomba (Figura 5.2). Además, utiliza una curva de calefacción/enfriamiento para determinar la temperatura de suministro del agua ($T_{ws,h}$ y $T_{ws,c}$) en función de la temperatura exterior (ver ejemplo en Figura 5.1). La terminología utilizada y el funcionamiento se describen en los siguientes apartados.

![Gráfico de Temperatura de suministro del agua](image)

Figura 5.1. Curva de Temperatura de suministro del agua en función de la temperatura exterior.

El punto de ajuste (setpoint) $T_{set}$ es el valor esperado de la variable controlada $T_{controlled}$, y la banda $\Delta T_h + \Delta T_c$ alrededor de este parámetro define los límites para calefacción $T_{set,h}$ y enfriamiento $T_{set,c}$. Un sensor mide la temperatura controlada $T_{controlled}$, transmite este
valor al controlador quien lo compara con $T_{set}$ y genera una acción correctiva hacia los dispositivos controlados que son el suelo y el techo del espacio (Figura 5.2).

En este caso es usado un controlador on/off de 3 etapas (Figura 5.3a) que ejecuta las siguientes acciones:

- Enciende calefacción si: $T_{controlled} < T_{set} - \Delta T_h$
- No se ejecuta acción si: $T_{set} - \Delta T_h < T_{controlled} < T_{set} + \Delta T_c$
- Enciende enfriamiento si: $T_{controlled} > T_{set} + \Delta T_c$

![Diagrama de bloque general del controlador de 3 etapas on/off con realimentación (feedback) [5]](Figura 5.2)

El agente de control es el agua para calefacción o enfriamiento suministrada al TABS, cuya temperatura de suministro depende de las curvas de calefacción y enfriamiento, las cuales son tomadas en base a un modelo elaborado por Sourbron [5] (edificio de oficinas de dos zonas en un clima moderado). Estas curvas pueden ser adaptadas mediante los factores de corrección $CF_{h Sv}$ y $CF_{c Sv}$ (ver Figura 5.3b), dando lugar a un nuevo valor de ajuste (setpoint value, sv) para la temperaturas de suministro de agua ($T_{WS,HSV}$ y $T_{WS,C Sv}$). Los parámetros utilizados comúnmente en un estudio son enumerados en la Tabla 5.1.

Para mayor comodidad, $\Delta T_{min}$ y $\Delta T_{max}$ se utilizan como parámetros de control, y se relacionan se la siguiente forma:

$$T_{set,h} = T_{set} - \Delta T_h = T_{min} + \Delta T_{min}$$ (50)
\[ T_{set,c} = T_{set} + \Delta T_c = T_{max} - \Delta T_{max} \]  

(51)

Tabla 5.1. Descripción de ajustes del controlador comunes [5]

<table>
<thead>
<tr>
<th>Ajustes del controlador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curva de calefacción</td>
</tr>
<tr>
<td>Curva de enfriamiento</td>
</tr>
<tr>
<td>( CF_{hsv}/ CF_{csv} )</td>
</tr>
<tr>
<td>( T_{controlled} )</td>
</tr>
<tr>
<td>( T_{set} )</td>
</tr>
<tr>
<td>( T_{max}/T_{min} )</td>
</tr>
<tr>
<td>( \Delta T_{min}/\Delta T_{max} )</td>
</tr>
</tbody>
</table>

Figura 5.3. (a) Adaptación al valor setpoint de temperatura (\( \Delta T_{h}/\Delta T_c \)). (b) Adaptación de la curva de calefacción/enfriamiento (\( CF_{hsv}/CF_{csv} \)) [5]

Tal como se ha mencionado anteriormente, el modelo convencional otorgará resultados globales como respuesta a distintos ajustes de los parámetros del controlador, esto implica que la configuración será personalizada a cada zona, ya que en cada una se deberá probar una combinación de ajustes que otorgue los mejores resultados.
6. Caso de estudio: Edificio de Oficinas

En los capítulos anteriores se ha descrito el funcionamiento y modelos de transferencia de calor en los TABS en forma genérica. Sin embargo, para realizar una simulación y apreciar la dinámica real de la temperatura del aire interior en un edificio utilizando los TABS, es necesario caracterizar un caso particular que permita una retroalimentación, la cual es necesaria para escoger los parámetros de un sistema de control capaz de brindar el confort térmico requerido para sus ocupantes.

El caso estudiado cuenta con una ocupación, iluminación y equipos que contribuyen a la carga térmica interna durante las horas de trabajo. El objetivo es evaluar el comportamiento de los TABS al acondicionar este edificio en varias zonas climáticas presentes en Chile, por lo que son seleccionadas ciudades en cada zona térmica para realizar este estudio (ver Tabla 6.1).

<table>
<thead>
<tr>
<th>Zona Térmica</th>
<th>Clima</th>
<th>Ciudad</th>
<th>Estación Meteorológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Norte Litoral</td>
<td>Huasco</td>
<td>Estación Huasco Sivica</td>
</tr>
<tr>
<td>B</td>
<td>Norte Desértica</td>
<td>Calama</td>
<td>Estación Chiu Chiu</td>
</tr>
<tr>
<td>C</td>
<td>Norte Valles Trasversales</td>
<td>Salamanca</td>
<td>Estación Curcumen</td>
</tr>
<tr>
<td>D</td>
<td>Central Litoral</td>
<td>Valparaíso</td>
<td>Estación Viña del Mar</td>
</tr>
<tr>
<td>E</td>
<td>Central Interior</td>
<td>Santiago</td>
<td>Estación Parque O’higgins</td>
</tr>
<tr>
<td>F</td>
<td>Sur Litoral</td>
<td>Puerto Montt</td>
<td>Estación Miraflores</td>
</tr>
<tr>
<td>G</td>
<td>Sur Interior</td>
<td>Temuco</td>
<td>Estación Las Encinas</td>
</tr>
<tr>
<td>H</td>
<td>Extremo Sur</td>
<td>Coyhaique</td>
<td>Estación Coyhaique</td>
</tr>
<tr>
<td>I</td>
<td>Andina</td>
<td>Putre</td>
<td>Sin información</td>
</tr>
</tbody>
</table>

En este capítulo se describe la planta analizada del edificio, la construcción de datos meteorológicos, los parámetros de construcción y una descripción del modelo utilizado, cuyos resultados serán la base para un análisis en el siguiente capítulo.
6.1 Edificio Típico de oficinas de una zona

Una de las ventajas para el uso de los TABS en el acondicionamiento térmico es que no supone una modificación a la construcción tradicional de un edificio, por lo que no requiere consideraciones extra al diseño habitual. La zona analizada corresponde a una planta intermedia de un edificio destinado al uso de oficinas abiertas (Figura 6.1), la cual contiene un núcleo de servicios que corresponde a un espacio no acondicionado térmicamente, lo que implica que se encuentra a la temperatura del ambiente exterior.

![Figura 6.1 Layout de planta de oficinas abiertas con un espacio no acondicionado](image)

Esta planta de oficinas es un piso intermedio, por lo que la estancia superior e inferior son recintos acondicionados térmicamente. Las principales dimensiones de esta planta se muestran en la Tabla 6.2. Otras características constructivas como los cerramientos opacos (muros), cerramientos acristalados (ventanas), suelo entre pisos (TABS) y coeficiente de atenuación interior IAC utilizados se pueden ver en detalle en Anexos.

<table>
<thead>
<tr>
<th>Tabla 6.2 Características de la construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie suelo acondicionado</td>
</tr>
<tr>
<td>Altura muros</td>
</tr>
<tr>
<td>Superficie Opaca</td>
</tr>
<tr>
<td>Superficie Acristalada</td>
</tr>
</tbody>
</table>
Otros parámetros utilizados para la construcción del modelo de edificio de oficinas se muestran en la Tabla 6.3. Además, para evaluar las cargas térmicas hora a hora se deben fijar los horarios de trabajo al interior de la oficina, y horarios en los que funcionará el sistema de ventilación (ver Tabla 6.4).

<table>
<thead>
<tr>
<th>Tabla 6.3 Características del edificio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de módulos TABS</td>
</tr>
<tr>
<td>Número de ocupantes</td>
</tr>
<tr>
<td>Ganancias por ocupación</td>
</tr>
<tr>
<td>Ganancias por iluminación</td>
</tr>
<tr>
<td>Ganancias por equipos</td>
</tr>
<tr>
<td>Tasa de Infiltración</td>
</tr>
<tr>
<td>Tasa de Ventilación</td>
</tr>
<tr>
<td>Temperatura de aire para ventilación</td>
</tr>
<tr>
<td>Temperatura de diseño</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 6.4 Horarios de Operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horario de ocupación</td>
</tr>
<tr>
<td>Ventilación</td>
</tr>
</tbody>
</table>

6.2 Construcción de datos meteorológicos

Dado que un proyecto arquitectónico se encuentra intrínsecamente ligado a su entorno y clima, un estudio como este debe necesariamente considerar los factores imperantes en la zona como la temperatura, velocidad del viento, humedad y radiación incidente. Así, posteriormente incluir estos factores en el cálculo de requerimientos energéticos, cumplimiento de salud y confort, etc.

El estudio se realiza en base a información meteorológica (temperatura ambiental, humedad relativa y radiación total horizontal) durante un año, registradas hora a hora en estaciones meteorológicas a lo largo del país [24].
6.3 Metodología de modelación

Para desarrollar este modelo paramétrico que calcula la temperatura del aire interior $T_{ia}$ hora a hora, se realiza un modelo que calcula las principales cargas térmicas de calefacción y refrigeración (descritas en el capítulo 3) de manera independiente en estado estacionario. La temperatura del aire interior es calculada a partir de un balance energético de las mencionadas cargas térmicas, añadiendo a los TABS como fuente o sumidero de energía durante su funcionamiento activo. A través del modelo transiente se incorpora además el efecto de la energía almacenada en la masa térmica de techo, suelo y muros, que amortiguan los cambios de temperatura interior. El software utilizado para desarrollar este modelo paramétrico es el “Engineering Equation Solver (EES)” [22]

6.3.1 Software utilizado

EES es un software académico muy útil en la resolución de problemas de termodinámica, mecánica de fluidos y transferencia de calor, debido a las múltiples funciones incorporadas en su librería. EES identifica y agrupa automáticamente en bloques las ecuaciones que deben ser resueltas de manera simultánea, lo cual simplifica el proceso de programación del usuario. EES proporciona herramientas útiles para el cálculo ingenieril de propiedades termofísicas y matemáticas. Así, EES permite al usuario concentrarse más en el diseño del modelo que en su resolución debido a la complejidad matemática que pueda constituir el problema [22].

El uso de tablas paramétricas, semejantes a una hoja de cálculo, permite el cálculo de valores de variables dependientes a partir del ingreso de las variables de entrada independientes en la misma tabla.

6.3.2 Características del modelo

Como se ha mencionado anteriormente, el modelo calcula a través de la asignación de las variables de entrada, las principales cargas térmicas que afectan al recinto, a la vez que por medio del método de Euler (ver sección 4.2), es calculada la temperatura del núcleo de hormigón $T_c$ y la temperatura del aire interior $T_{ia}$ mediante un balance energético en el hormigón y el aire respectivamente. Este balance incluye la energía entregada/disipada por los TABS.

El modelo seleccionado para caracterizar las resistencias térmicas en el TABS es el modelo de resistencias EMPA (ver sección 4.1). Este modelo en estado estacionario en una
dimensión es buena simplificación del problema de transferencia de calor desde el agua hacia el hormigón (o viceversa), ya que no es necesario conocer en detalle la distribución de temperatura del agua en la tubería, sino la cantidad de energía transferida. Agregando la capacidad de acumulación del hormigón es capaz de brindar la modelación con el nivel de detalle requerido para este modelo inicial.

Antes de desarrollar un mecanismo de control se debe seleccionar el criterio de las condiciones de confort térmico a cumplir con dicho mecanismo. En este sentido el criterio de confort térmico estándar (ver sección 2.4.1) es el indicado para este estudio, ya que es un criterio de mayor simplicidad tomando en cuenta que el objetivo de este trabajo es tener nociones de la capacidad de brindar confort térmico de los TABS en distintas zonas climáticas.

Bajo el mismo criterio anterior, el modelo de control seleccionado es un modelo de control convencional (ver sección 2.4.2), cuyo parámetro de control seleccionado es la temperatura del aire interior $T_{ia}$, este modelo es capaz de brindar valiosa información acerca del comportamiento de los TABS. Es necesario definir los criterios accionamiento de la bomba y los parámetros que ajusten la curva de temperatura de suministro del agua. Estos parámetros serán seleccionados de acuerdo al rendimiento del controlador para distintos ajustes en cada ciudad estudiada, por lo que serán personalizados para cada zona térmica.

6.3.3 Supuestos

- El flujo térmico en la losa es unidimensional
- La estancia superior e inferior a la planta analizada también se encuentran acondicionadas térmicamente
- La superficie inferior en el núcleo de hormigón corresponde al techo del recinto y la superficie superior en el núcleo de hormigón corresponde al suelo del recinto
- Las cargas latentes y humedad son controladas mediante el sistema de ventilación
- La ventilación mecánica crea una sobrepresión que disminuye la diferencia de presión entre el interior y exterior, disminuyendo la tasa de infiltración a 0,2 ACH (renovaciones de aire por hora)
6.3.4 Variables de Entrada

Las variables independientes de entrada en las tablas paramétricas de EES en este modelo corresponden a parámetros meteorológicos y variables que dependen de la ubicación del lugar:

**TLE** (Tiempo Local Estándar): Parámetro que corresponde a la hora en la que fue realizada la medición de datos meteorológicos, utilizado junto a la corrección por longitud para calcular el TSA (Tiempo Solar Estándar).

**LS**: Longitud estándar, correspondiente al valor utilizado según la zona horaria utilizada en la zona.

**\( G_{T,h} \)**: Corresponde a la radiación global horizontal medida por la estación meteorológica.

**\( \phi_{rel} [%] \)**: Corresponde al porcentaje de humedad relativa en el ambiente medido en la estación meteorológica, utilizado para calcular la temperatura del cielo.

**\( T_{amb} \)**: Temperatura ambiental medida en la estación meteorológica, considerada como la temperatura infinita exterior y la temperatura de los cuerpos circundantes.

Además, a través de tablas de búsqueda (“Lookup Tables” [22]), se incluyen parámetros dependientes de la zona geográfica que se está estudiando:

**\( \phi_{lat} \)**: Latitud de la zona estudiada, utilizada para el cálculo de ángulos solares.

**\( LL \)**: Longitud local de la zona, utilizada para la corrección horaria por longitud.

Además de estas variables de entrada, EES permite la modificación de otros parámetros ingresados como: dimensiones del recinto, características de los materiales utilizados en muros y ventanas (espesor, conductividad, etc), coeficiente de atenuación solar IAC, tasa de infiltración, etc. lo que proporciona un modelo flexible para utilizar en otros casos de estudio.

6.4 Validación del modelo

6.4.1 Rango de aplicación del modelo TABS

Basado en el estudio de simulación de los aspectos térmicos de un edificio de oficinas, Lehmann [9] describe el potencial y las limitaciones de los TABS en términos de confort.
alcanzable y cargas térmicas totales máximas en edificios de oficinas. Su estudio indica las máximas cargas térmicas totales (ganancias internas más solares) permitidas para lograr mantener las condiciones de confort en un espacio, dependiendo del rango de variación de temperatura admisible. Sus resultados, junto a los obtenidos en este estudio se muestran en la Tabla 6.5.

<table>
<thead>
<tr>
<th>Variación de temperatura en el espacio [K]</th>
<th>Ganancias térmicas máximas permisibles [W/m²]</th>
<th>Trabajo de Título [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alfombra</td>
<td>Piso Elevado</td>
</tr>
<tr>
<td>3</td>
<td>33-34</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>41-44</td>
<td>36-37</td>
</tr>
<tr>
<td>5</td>
<td>50-53</td>
<td>42-45</td>
</tr>
</tbody>
</table>

### 6.4.2 Transmisión térmica entre la superficie y el recinto

Los valores comúnmente aceptados para sistemas de acondicionamiento radiante, para evitar posibles condensaciones y disconfort térmico debido a la estratificación de la temperatura, se muestran a continuación

<table>
<thead>
<tr>
<th></th>
<th>Coeficiente de transferencia combinado (W/m²K)</th>
<th>Temperatura superficial admisible (°C)</th>
<th>Máxima capacidad de disipación (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calefacción</td>
<td>Enfriamiento</td>
<td>Máxima</td>
</tr>
<tr>
<td>Suelo ocupado</td>
<td>11</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Techo</td>
<td>6</td>
<td>11</td>
<td>~27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coeficiente de transferencia combinado (W/m²K)</th>
<th>Temperatura superficial (°C)</th>
<th>Máxima capacidad de disipación (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calefacción</td>
<td>Enfriamiento</td>
<td>Máxima</td>
</tr>
<tr>
<td>Suelo ocupado</td>
<td>~7,59</td>
<td>~7,61</td>
<td>~25</td>
</tr>
<tr>
<td>Techo</td>
<td>~5,59</td>
<td>~6,11</td>
<td>~25</td>
</tr>
</tbody>
</table>
En la Tabla 6.7 se muestra que los valores calculados en este modelo no exceden los máximos y mínimos propuestos para el acondicionamiento radiante.

6.4.3 Comportamiento de la temperatura interior

Para validar el modelo se realiza un análisis cualitativo del comportamiento de la temperatura del aire al interior del recinto. En la Figura 6.2 se observa que este parámetro oscila dentro de los límites impuestos de confortabilidad durante los horarios de ocupación, por lo que el modelo teórico es capaz de cumplir con los requerimientos exigidos.

Figura 6.2 Variación de la temperatura al interior del recinto acondicionado con TABS
7. Resultados y Análisis

Los resultados que se exponen del modelo corresponden a la comparación de los parámetros de control, cálculos de la energía demandada para acondicionar el sistema en cada zona térmica, y horas de funcionamiento de los TABS en forma activa (accionando la bomba de circulación). En Anexos se puede apreciar el comportamiento de la temperatura del aire interior en semanas características durante el año.

La curva de temperatura de suministro de agua se calcula de la siguiente forma:

\[ T_{ws,HSV} = -0.22 \cdot T_{amb} + 25.1 + CF_{HSV} \] (52)

\[ T_{ws,CSV} = -0.16 \cdot T_{amb} + 23.3 + CF_{CSV} \] (53)

Con (52) para calefacción y (53) para enfriamiento. Los parámetros comunes para todas las zonas se indican en la Tabla 7.1, y el resumen de los ajustes del controlador característico en cada zona y temporada al año se presenta en la Tabla 7.2.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Ene-Feb</th>
<th>Mar-Abr</th>
<th>May-Ago</th>
<th>Sep-Oct</th>
<th>Nov-Dic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( CF_{HSV}/CF_{CSV} )</td>
<td>( \Delta T_{min}/\Delta T_{max} )</td>
</tr>
<tr>
<td>A</td>
<td>6/-6</td>
<td>0/1</td>
<td>0/1</td>
<td>0/0,5</td>
<td>0/1</td>
</tr>
<tr>
<td>B</td>
<td>6/-6</td>
<td>0/1</td>
<td>0/1</td>
<td>0/0,5</td>
<td>0/1</td>
</tr>
<tr>
<td>C</td>
<td>3/-3</td>
<td>0,5/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0,5/1</td>
</tr>
<tr>
<td>D</td>
<td>3/-3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/0</td>
<td>0/1</td>
</tr>
<tr>
<td>E</td>
<td>3/-3</td>
<td>0,5/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0,5/1</td>
</tr>
<tr>
<td>F</td>
<td>6/-6</td>
<td>0/0</td>
<td>0/1</td>
<td>0/0,5</td>
<td>0/1</td>
</tr>
<tr>
<td>G</td>
<td>3/-3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/0</td>
<td>0/1</td>
</tr>
<tr>
<td>H</td>
<td>3/-3</td>
<td>0/1</td>
<td>0/1</td>
<td>0,5/0</td>
<td>0/1</td>
</tr>
</tbody>
</table>
7.1 Cargas Térmicas

Tal como lo señala la literatura que ha abordado estos temas con anterioridad, en las cargas térmicas de los edificios no residenciales de uso oficinista predominan las ganancias internas $q_{ig}$ ejercidas por la ocupación, iluminación y uso de los equipos de trabajo (como se puede apreciar en la Figura 7.1). De ahí que en la mayoría de los casos se requiere destinar mayor cantidad de energía a la refrigeración de un espacio que a la calefacción. A diferencias del resto de elementos que conforman las cargas térmicas, no es posible realizar acciones que provoquen un cambio considerable en las ganancias interiores, ya que se debería disminuir la tasa de ocupación del edificio o invertir en equipos e iluminación que descarguen menor calor al ambiente. Sin embargo, se debe tener cuidado con el resto de los parámetros ya que adquieren una mayor influencia en los períodos sin ocupación.

Debido a las grandes superficies expuestas al ambiente, la envolvente térmica es un parámetro de gran relevancia, especialmente en zonas con temperaturas más extremas, por ello la importancia de mejorar la aislación para reducir las pérdidas a través de los cerramientos opacos. Sin embargo, el control de la infiltración también es importante para reducir las pérdidas o ganancias a través de la envolvente.

Figura 7.1 Ejemplo de Simulación de cargas térmicas en un edificio de oficinas en EES
7.2 Demanda de energía

En esta sección se mostrarán gráficos que permitan comparar la demanda de energía térmica que debe entregar o disipar el agua en los TABS durante un año en cada zona térmica. Esta demanda de energía térmica viene dada por la energía que intercambia el agua $q_{agua}$ y el núcleo de hormigón, que luego acondiciona térmicamente al interior del recinto.

![Figura 7.2 Demanda de potencia térmica anual en cada zona analizada](image)

En la Figura 7.2 se puede apreciar la diferencia existente en la cantidad de energía demandada para calefacción y enfriamiento en cada una de las zonas. Si bien las diferencias no son significativas, se puede apreciar que la zona norte (Huasco, Calama y Salamanca) es la que demanda una mayor cantidad de energía para mantener las condiciones de confortabilidad. Esto radica principalmente en que requieren una mayor cantidad de energía destinada al enfriamiento del recinto, superior a la que se requiere en el resto del país. Dado que las ganancias internas y la protección son iguales para todos los modelos, este aumento de energía requerida para el enfriamiento se basa en las ganancias a través de la envolvente y ganancias solares.

En el norte predominan las altas temperaturas durante el verano, especialmente en las zonas interiores como Calama o Salamanca, y además se caracterizan por sus altos niveles de radiación solar directa, por ende es comprensible esta mayor demanda de energía para refrigeración. Por otra parte, a diferencia de las zonas interiores, las zonas costeras como Huasco se caracterizan por tener temperaturas mínimas que no son tan bajas, por ende la
energía destinada a la calefacción en los meses fríos es menor. Esto se puede apreciar de mejor manera comparando la energía requerida para acondicionar el recinto ubicado en la costa como Huasco (Figura 7.3a) y un recinto ubicado en una zona interior desértica como Calama (Figura 7.3b) donde la gran oscilación térmica dificulta el control de la temperatura interior, produciendo una alternancia en el funcionamiento del sistema entre calefacción y enfriamiento. Esta alternancia se traduce en un mayor consumo de energía y por lo tanto un uso ineficiente de la misma.

Figura 7.3 Temperatura al interior y potencia térmica solicitada en a) Huasco y b) Calama
Siguiendo el análisis de la Figura 7.2, las ciudades de la zona central, Valparaíso y Santiago, presentan una demanda energética $85$ y $108\text{ [kW/m}^2\text{año]}$ respectivamente, siendo menor la demanda térmica de Valparaíso. Al detallar la demanda energética mensual en ambas ciudades, se puede apreciar en la Figura 7.4 y Figura 7.5 que la ciudad sometida a un clima costero requiere una potencia térmica para calefacción de manera más estable durante el año. En cambio Santiago, ubicado en un valle interior, está inmerso en condiciones climáticas un poco más extremas con veranos más calurosos e inviernos con menor temperatura.

Figura 7.4 Demanda energética mensual Valparaíso

Figura 7.5 Demanda energética mensual Santiago
Por último, en la Figura 7.2 se puede apreciar que en los sectores estudiados de la zona sur de Chile (Temuco, Puerto Montt y Coyhaique) tienen un valor de demanda energética anual semejante a las localidades de la zona central del país, sin embargo, en estas 3 localidades ocurre el fenómeno de que la energía térmica requerida anualmente para calefacción es igual o mayor que la requerida para enfriamiento (ver Figura 7.6). Este fenómeno puede ser explicado porque en la zona sur las temperaturas mínimas comienzan a disminuir rápidamente con respecto a la zona central, siendo los inviernos lluviosos y fríos. Esto hace aumentar las pérdidas por infiltración y envolvente térmica, las cuales dependen fundamentalmente de la temperatura exterior, especialmente durante los días donde no hay ganancias internas (sábado y domingo).

Como se aprecia en la Figura 7.7, los días en los que no hay ocupación en el recinto, la temperatura interior cae abruptamente, y es necesario acondicionar el espacio para que al comienzo de la jornada laboral se encuentre en óptimas condiciones de confortabilidad. Ello implica un mayor consumo de energía destinada a la calefacción del edificio durante el fin de semana.
Es importante recalcar que tanto la demanda de energía en cada zona como el accionamiento de la bomba de circulación del agua por los TABS, dependen directamente de los parámetros del controlador escogidos (ver Tabla 7.2), los cuales fueron considerados en pos de un mejor cumplimiento de las condiciones de confort térmico en la zona. Sin embargo, esto implica que los resultados obtenidos tienen cierta sensibilidad a los criterios utilizados para diseñar el mecanismo de control tanto del accionamiento de la bomba como de la temperatura del agua.

### 7.3 Tiempo de operación de la bomba

Otro factor importante a considerar es la cantidad de horas en las que el sistema activó el hormigón, o sea, que debía circular agua a través de las tuberías mediante el accionamiento de la bomba, siendo una consideración importante si se quiere evaluar en un trabajo futuro los costos asociados al funcionamiento de este sistema, y un parámetro a considerar para conocer el grado de control que se puede tener de los TABS.
La Figura 7.8 muestra las horas de operación de la bomba en los TABS durante el año en cada zona estudiada. No es posible realizar alguna conclusión sobre las horas de demanda de la bomba por zona, ya que no se logra apreciar un patrón de comportamiento según zona norte-centro-sur o costa-interior. Sin embargo, logra brindar información sobre la elección del sistema de control, el requerimiento de menos horas de uso de la bomba puede indicar un mejor ajuste del sistema de control para esa zona, o que las condiciones ambientales en la zona facilitan el control de los TABS. En este caso, Puerto Montt y Huasco requerirían una menor cantidad de horas del TABS en forma activa.

Analizando en conjunto la demanda energética y las horas de operación de la bomba en cada zona (ver Figura 7.9) se observa que en las localidades de Calama y Salamanca existe una demanda de energía mayor, en tanto que las horas de operación de la bomba son semejantes al resto de las ciudades.

En la localidad de Huasco, pese a demandar una mayor cantidad de energía, se requiere una menor cantidad de horas de uso de los TABS en forma activa para mantener las condiciones de confort respecto a otras localidades de la zona norte. Esto se debe principalmente a que el controlador escogido demanda temperaturas mayores para calefacción y menores para refrigeración ($CF = 6/−6$ en Figura 7.10), y por lo tanto, una mayor demanda de energía.
Figura 7.9 Comparación entre potencia térmica requerida y horas operación de la bomba

Por otra parte, las ciudades en las zonas centro y sur del país requieren una cantidad de energía similar durante el año para mantener las condiciones de confort al interior del recinto. Sin embargo, la ciudad de Puerto Montt requiere una menor cantidad de horas de funcionamiento activo del TABS en comparación con las otras zonas, al igual que en el caso de Huasco, esta diferencia radica en el controlador escogido y el factor de corrección de la curva de suministro de agua $CF = 6/-6$. 
7.4 Casos Adicionales

7.4.1 Infiltración según la normativa chilena

El presente estudio se ha realizado en base a una tasa de infiltración de 0,2 ACH, recomendada según modelos creados por diversos autores, llegando a proponer incluso una infiltración de 0,05 ACH. Sin embargo, esta tasa de infiltración dista bastante a la exigida por la normativa chilena (ver Tabla 10.7 en Anexos), cuyos valores a una presión real de 4 Pa son aproximadamente 5 veces mayores (revisar Sección 3.4.2).

En la Figura 7.11 se muestra el comportamiento de los TABS al ajustar la infiltración a la tasa permitida por la normativa chilena. Es posible apreciar que en este caso se vuelve difícil controlar la temperatura de aire interior, teniendo episodios de incumplimiento de los parámetros de confortabilidad térmica fijados, además de una mayor alternancia entre usos de calefacción y refrigeración de los TABS a lo largo de la semana, lo cual es indeseable.

Si bien la normativa chilena no es lo suficientemente exigente, los valores de infiltración exigidos a 50 Pa no distan demasiado al utilizado en países europeos, esto reafirma que la aplicación de TABS en edificios requiere altos grados de estanqueidad, superiores a la normativa chilena, que minimicen las pérdidas por infiltraciones de aire para un funcionamiento óptimo del sistema.
7.4.2 Ganancias de calor sensible por ocupación

En este caso se considera que las ganancias internas por ocupación solo aportan calor sensible al sistema, lo cual reduce su aporte energético de 130 a $75 \text{ W/m}^2$. Esta modificación reduce en un 27% las ganancias internas del edificio. En la Figura 7.12 se ve que este cambio disminuye la tasa de crecimiento de la temperatura interior durante la ocupación, sin embargo, no produce cambios sustanciales en el comportamiento del sistema y su capacidad de brindar confortabilidad en su interior.

![Diagram](image)

a) Ganancia por ocupación: 130 W/m$^2$

b) Ganancia por ocupación: 75 W/m$^2$

Figura 7.12 Temperatura interior y demanda térmica considerando aporte: a) sensible y latente b) sólo sensible
7.5 Análisis y conclusión

Es posible realizar un análisis general considerando todos los puntos abarcados anteriormente. Como se mostró en los resultados, en un edificio de oficinas las cargas térmicas que tienen mayor relevancia durante las horas de ocupación son las ganancias internas. En base a ello, la temperatura al interior tenderá a subir durante el día mientras dure la ocupación. La función de los TABS es amortiguar esta alza de temperatura durante la ocupación, procurando conservar las condiciones de confort térmico, como también procurar que la temperatura al inicio de la jornada sea la adecuada para sus ocupantes.

Dada la importancia de las ganancias internas en el cálculo de cargas térmicas, es razonable pensar que en los lugares con mayor radiación solar y temperatura ambiental, como en el norte de Chile, no son lugares donde se pueda sacar el máximo provecho a esta tecnología. Esto se ve reflejado en la mayor demanda energética (principalmente para enfriamiento) en la zona norte (Huasco, Calama y Salamanca).

En la zona centro, Valparaíso presenta una demanda energética menor a la de Santiago, se puede apreciar que la ciudad costera presenta una demanda de calefacción menor y más estable a lo largo del año en comparación a Santiago, esto debido a las bajas temperaturas invernales en el valle interior y la menor oscilación de temperaturas máximas y mínimas en la ciudad costera.

En la zona sur y extremo sur del país, imperan las bajas temperaturas durante el invierno y las máximas durante el verano no son tan elevadas, esto es conveniente para neutralizar las cargas internas y disminuir el requerimiento de refrigeración, sin embargo las pérdidas a través de la envolvente cobran mayor relevancia en las horas y los días sin ocupación. En estas ciudades el requerimiento de calefacción es igual o superior al de enfriamiento debido a la necesidad de tener las condiciones térmicas adecuadas cuando los ocupantes comiencen la semana laboral.

Una observación transversal en todo el país, es que las ciudades ubicadas en el borde costero (Huasco, Valparaíso, Puerto Montt) presentan un menor requerimiento de energía térmica o una menor cantidad de horas de uso en forma activa de los TABS respecto al resto de las zonas del país. Huasco y Valparaíso demandan una menor cantidad de energía con respecto a ciudades ubicadas a una latitud similar, mientras que Puerto Montt requirió la menor cantidad
de horas de funcionamiento activo de los TABS, pero debido al elevado factor de corrección CF de la curva de temperatura de suministro del agua, la demanda térmica anual es semejante al del resto de las zonas estudiadas.

Resumiendo, dadas las características de las solicitudes térmicas de un edificio de oficinas y las particularidades de cada zona estudiada, la zona norte (Huasco, Calama y Salamanca) presenta desventajas respecto a las zonas centro y sur debido a sus mayores ganancias externas. Por otro lado, las zonas costeras (Huasco, Valparaíso y Pto. Montt) se adaptan de mejor manera a los ciclos diarios de cargas térmicas y requieren menos energía para mantener la confortabilidad térmica al interior. En el caso de la zona extremo sur (Coyhaique), se ve desfavorecida por las bajas temperaturas reinantes en invierno, las cuales incrementan las pérdidas a través de la envolvente térmica durante los días sin ocupación incrementando notablemente la demanda de calefacción.

En conclusión, la ciudad de Valparaíso es la que presenta un mejor comportamiento al simular la implementación los TABS, seguida de la ciudad de Puerto Montt. Mientras que las ciudades en las que es menos favorable implementar los TABS son las que se ubican en la zona norte del país.

7.5.1 Limitaciones del modelo

Es importante considerar la relevancia de los ajustes de los parámetros de control, tanto la temperatura de referencia, la temperatura controlada y los límites de confort para el accionamiento de la bomba, como el establecimiento de la curva de temperatura de suministro del agua, ya que todo esto se selecciona en función del cumplimiento del confort térmico en el recinto, y de acuerdo a que tan estricto se quiere que sea dicho cumplimiento. Por lo tanto, el modelo realizado es sensible a los distintos criterios de confort térmico y a los distintos modos de controlar el sistema para alcanzarlo.

Por otra parte, en la Figura 7.3b, se muestra la alternancia entre usos de calefacción y refrigeración de los TABS en Calama. Esto refleja una de las falencias del modelo de control convencional, ya que es contraproducente enfriar un recinto cuando la temperatura exterior está decayendo, lo cual acelera la disminución de temperatura y aumenta la posibilidad de que el espacio requiera calefacción en algunas horas más si la noche es fría.
8. Conclusiones Generales

Los sistemas de acondicionamiento térmico para edificios en base al intercambio radiativo entre superficies se han posicionado como una alternativa a los sistemas de climatización convencionales. En este contexto, los TABS surgen como una alternativa que además involucra la masa térmica del edificio como elemento activo en pos del acondicionamiento térmico.

En este estudio comparativo se ha evaluado el potencial de implementación de los TABS en distintas zonas climáticas en Chile. Para ello se ha creado un modelo paramétrico, éste permite simular la variación diaria de la temperatura del aire al interior de un edificio de oficinas acondicionado mediante TABS, obteniendo la demanda energética requerida (energía transferida entre el agua y el núcleo de hormigón) y el tiempo de operación de la bomba al año.

El modelo considera el comportamiento de las cargas térmicas a través de la envolvente, ganancias solares, ganancias internas y cargas por ventilación e infiltración; siendo las ganancias internas las cargas predominantes durante la ocupación, éstas hacen que durante la mayor parte del año se requiera refrigeración en el recinto. Sin embargo, durante los periodos sin ocupación, en ausencia de las ganancias interiores, las cargas por infiltración y envolvente térmica predominan generando pérdidas de energía desde el recinto hacia el exterior, lo que conlleva a la necesidad de calefacción en estos periodos. Esta demanda de calefacción se incrementa a medida que las temperaturas exteriores son menores.

El sistema se ha implementado a través de un modelo de control convencional cuyo controlador central regula: (i) el accionamiento de la bomba (abertura y cierre de válvulas) a través de la medición de una variable de control, que en este caso es la temperatura del aire interior; y (ii) la temperatura de suministro del agua, que varía según la temperatura del aire exterior.

Los resultados del modelo muestran que la ciudad de Valparaíso (litoral central) presenta la menor demanda de energía (85 kW/m²·año), y la ciudad de Puerto Montt (litoral sur) presenta el menor tiempo de operación de la bomba (1055 h/año), ambos a un flujo mágico de 6.67 lt/min. Esto significa que estos lugares son los que presentan un mayor potencial respecto al resto de zonas climáticas para implementar los TABS. Además, las
zonas del litoral en general tienen temperaturas extremas más estables respecto a las zonas interiores, esto implica que la oscilación de temperatura es menor durante el día, lo que ayuda a disminuir la demanda de calefacción y refrigeración.

Por otro lado la zona norte tiene una serie de desventajas: mayores ganancias externas producto de la mayor radiación incidente y mayores temperaturas máximas son contraproducentes con un edificio de oficinas, que intrínsecamente requiere refrigeración.

Por el contrario, en la zona sur interior y extremo sur aumenta la demanda de calefacción, esto debido a las menores temperaturas de la zona, éstas incrementan las cargas por infiltración y la envolvente durante los días sin ocupación.

Respecto al modelo de control implementado, el modelo convencional es útil para otorgar valiosa información sobre el comportamiento de los TABS, sin embargo no optimiza al máximo el potencial de implementación que poseen, ya que es susceptible que ocurran episodios de alternancia entre calefacción y refrigeración durante el mismo día.

Adicionalmente, se debe destacar que la aplicación de esta tecnología requiere edificios con un alto grado de estanqueidad que limiten las pérdidas o ganancias de calor por infiltraciones de aire, sino la oscilación de temperatura al interior será mayor y pueden producirse efectos indeseables como el incumplimiento del rango de temperaturas de confort y alternancias en el uso de calefacción y refrigeración.

Finalmente, para considerar las zonas donde es ventajoso implementar los TABS se debe considerar que esta tecnología se aplica principalmente en edificios de oficinas, debido a la estabilidad de su demanda térmica a causa de la influencia de las ganancias internas, por lo que su uso en climas calurosos o fríos posee ventajas y desventajas a considerar. Otra consideración es que en los TABS se debe mantener controlada la temperatura de la losa tanto en los días de ocupación como en los días sin ocupación, esto implica un desafío para mantenerla controlada en ausencia de las cargas internas.
8.1 Estudios Futuros

Este trabajo de título ha sentado las bases para la implementación de los TABS en edificios de oficinas de Chile, sin embargo, es necesario profundizar algunos conceptos que no fueron abarcados en este estudio como:

- Evaluación de alternativas de generación para abastecer la demanda de agua caliente o fría
- Estudio de sistemas de control predictivos en los TABS
- Estudio de sistemas de ventilación mecánica para el control de cargas latentes y reducción de infiltración
9. Referencias


10. Anexos

10.1 Cálculo de Temperatura del cielo

La temperatura del cielo se calcula:

$$T_{cielo} = \varepsilon^{0.25} \cdot T_{amb} \text{ [K]}$$  \hspace{1cm} (54)

Estando en función de la temperatura ambiental y la emisividad media del cielo, calculada por

$$\varepsilon_{cielo} = F_{nubosidad} \cdot \left( 0.787 + 0.764 \cdot \ln \left( \frac{T_{rocio}}{273.15} \right) \right)$$  \hspace{1cm} (55)

Donde $T_{rocio}$ es la temperatura de rocío del aire en las condiciones exteriores (en K) y $F_{nubosidad}$ es el factor de nubosidad, que depende del índice de nubosidad $I_N$

$$F_{nubosidad} = 1 + 0.024 \cdot I_N - 0.0035 \cdot I_N^2 + 0.0028 \cdot I_N^3$$  \hspace{1cm} (56)
10.2 Parámetros de Construcción

Tabla 10.1 Propiedades de los muros exteriores

<table>
<thead>
<tr>
<th>Capas</th>
<th>e [m]</th>
<th>( \lambda ) [W/m \cdot K]</th>
<th>( c ) [J/kg \cdot K]</th>
<th>( \rho ) [kg/m(^3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel trespa</td>
<td>0,01</td>
<td>0,17</td>
<td>1600</td>
<td>600</td>
</tr>
<tr>
<td>Poliuretano proyectado</td>
<td>0,05</td>
<td>0,028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormigón Armado</td>
<td>0,2</td>
<td>2,5</td>
<td>1000</td>
<td>2500</td>
</tr>
<tr>
<td>Yeso cartón</td>
<td>0,015</td>
<td>0,25</td>
<td>1000</td>
<td>825</td>
</tr>
</tbody>
</table>

Tabla 10.2 Suelo entre Plantas (TABS)

<table>
<thead>
<tr>
<th>Capas</th>
<th>e [m]</th>
<th>( \lambda ) [W/m \cdot K]</th>
<th>( c ) [J/kg \cdot K]</th>
<th>( \rho ) [kg/m(^3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solado piedra artificial</td>
<td>0,015</td>
<td>1,3</td>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>Mortero</td>
<td>0,01</td>
<td>0,035</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>HA</td>
<td>0,25</td>
<td>2,5</td>
<td>1000</td>
<td>2500</td>
</tr>
</tbody>
</table>

Tabla 10.3 Cerramientos acristalados

<table>
<thead>
<tr>
<th>Capas</th>
<th>Superficie ([m^2])</th>
<th>( U ) [W/m(^2) \cdot K]</th>
<th>( e_{vidrio} ) [mm]</th>
<th>( SHGC ) [-]</th>
<th>( T ) [-]</th>
<th>( R_f ) [-]</th>
<th>( R_b ) [-]</th>
<th>( A_{f1} ) [-]</th>
<th>( A_{f2} ) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>45,36</td>
<td>3,31</td>
<td>6</td>
<td>0,67</td>
<td>0,58</td>
<td>0,12</td>
<td>0,12</td>
<td>0,18</td>
<td>0,12</td>
</tr>
<tr>
<td>Sur</td>
<td>13,77</td>
<td>2,62</td>
<td>6</td>
<td>0,59</td>
<td>0,48</td>
<td>0,15</td>
<td>0,16</td>
<td>0,26</td>
<td>0,11</td>
</tr>
<tr>
<td>Este</td>
<td>35,10</td>
<td>2,62</td>
<td>6</td>
<td>0,55</td>
<td>0,4</td>
<td>0,24</td>
<td>0,2</td>
<td>0,2</td>
<td>0,17</td>
</tr>
<tr>
<td>Oeste</td>
<td>35,10</td>
<td>2,62</td>
<td>6</td>
<td>0,55</td>
<td>0,4</td>
<td>0,24</td>
<td>0,2</td>
<td>0,2</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Tabla 10.4 Coeficiente de atenuación de sombras IAC

<table>
<thead>
<tr>
<th>Coeficiente IAC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( IAC_0 )</td>
<td>0,25</td>
</tr>
<tr>
<td>( IAC_{60} )</td>
<td>0,06</td>
</tr>
<tr>
<td>( IAC_{diffuse} )</td>
<td>0,37</td>
</tr>
</tbody>
</table>
### 10.3 Demanda de calefacción y refrigeración mensual en cada zona térmica

#### Tabla 10.5 Demanda de Calefacción mensual en cada zona

<table>
<thead>
<tr>
<th>Mes</th>
<th>Huasco</th>
<th>Calama</th>
<th>Salamanca</th>
<th>Valparaíso</th>
<th>Santiago</th>
<th>Pto. Montt</th>
<th>Temuco</th>
<th>Coyhaique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>1219</td>
<td>2891</td>
<td>1545</td>
<td>2890</td>
<td>1373</td>
<td>3292</td>
<td>3596</td>
<td>2523</td>
</tr>
<tr>
<td>Febrero</td>
<td>645</td>
<td>2533</td>
<td>1741</td>
<td>3122</td>
<td>1587</td>
<td>3292</td>
<td>3596</td>
<td>3101</td>
</tr>
<tr>
<td>Marzo</td>
<td>3081</td>
<td>3269</td>
<td>1175</td>
<td>2578</td>
<td>1567</td>
<td>4524</td>
<td>3815</td>
<td>3679</td>
</tr>
<tr>
<td>Abril</td>
<td>4372</td>
<td>4651</td>
<td>4400</td>
<td>4457</td>
<td>2976</td>
<td>6051</td>
<td>5501</td>
<td>7899</td>
</tr>
<tr>
<td>Mayo</td>
<td>1690</td>
<td>5278</td>
<td>4365</td>
<td>3438</td>
<td>3806</td>
<td>3199</td>
<td>4620</td>
<td>6497</td>
</tr>
<tr>
<td>Junio</td>
<td>3519</td>
<td>7764</td>
<td>5225</td>
<td>5181</td>
<td>7799</td>
<td>4025</td>
<td>4341</td>
<td>7752</td>
</tr>
<tr>
<td>Julio</td>
<td>4659</td>
<td>7834</td>
<td>5993</td>
<td>3827</td>
<td>5651</td>
<td>5145</td>
<td>5145</td>
<td>7938</td>
</tr>
<tr>
<td>Agosto</td>
<td>3207</td>
<td>5922</td>
<td>6857</td>
<td>2353</td>
<td>5147</td>
<td>4387</td>
<td>4666</td>
<td>7092</td>
</tr>
<tr>
<td>Septiembre</td>
<td>4895</td>
<td>10161</td>
<td>5408</td>
<td>4962</td>
<td>5187</td>
<td>5088</td>
<td>4962</td>
<td>7165</td>
</tr>
<tr>
<td>Octubre</td>
<td>3637</td>
<td>6742</td>
<td>6145</td>
<td>3564</td>
<td>2424</td>
<td>4414</td>
<td>5012</td>
<td>5287</td>
</tr>
<tr>
<td>Noviembre</td>
<td>3366</td>
<td>5711</td>
<td>2135</td>
<td>4791</td>
<td>3199</td>
<td>3394</td>
<td>5267</td>
<td>3725</td>
</tr>
<tr>
<td>Diciembre</td>
<td>2782</td>
<td>3851</td>
<td>1514</td>
<td>4713</td>
<td>2594</td>
<td>3999</td>
<td>4597</td>
<td>3851</td>
</tr>
</tbody>
</table>

| Anual   | 37073  | 66608  | 46773     | 45876      | 43670    | 51377      | 54874  | 66509     |
| Máxima  | 4895   | 10161  | 6857      | 5181       | 7799     | 6051       | 5501   | 7938      |

#### Tabla 10.6 Demanda de Enfriamiento mensual en cada zona

<table>
<thead>
<tr>
<th>Mes</th>
<th>Huasco</th>
<th>Calama</th>
<th>Salamanca</th>
<th>Valparaíso</th>
<th>Santiago</th>
<th>Pto. Montt</th>
<th>Temuco</th>
<th>Coyhaique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>10033</td>
<td>7556</td>
<td>9851</td>
<td>7915</td>
<td>8799</td>
<td>4560</td>
<td>8449</td>
<td>6782</td>
</tr>
<tr>
<td>Febrero</td>
<td>7676</td>
<td>7137</td>
<td>8708</td>
<td>6521</td>
<td>7279</td>
<td>3841</td>
<td>7677</td>
<td>6512</td>
</tr>
<tr>
<td>Marzo</td>
<td>8567</td>
<td>7120</td>
<td>7573</td>
<td>4816</td>
<td>6687</td>
<td>4312</td>
<td>4503</td>
<td>6242</td>
</tr>
<tr>
<td>Abril</td>
<td>7779</td>
<td>6686</td>
<td>8457</td>
<td>4681</td>
<td>5181</td>
<td>4765</td>
<td>4375</td>
<td>2947</td>
</tr>
<tr>
<td>Mayo</td>
<td>4747</td>
<td>6915</td>
<td>7438</td>
<td>2965</td>
<td>4572</td>
<td>2374</td>
<td>1156</td>
<td>257</td>
</tr>
<tr>
<td>Junio</td>
<td>4575</td>
<td>7342</td>
<td>6860</td>
<td>0</td>
<td>2825</td>
<td>1876</td>
<td>965</td>
<td>257</td>
</tr>
<tr>
<td>Julio</td>
<td>5496</td>
<td>8096</td>
<td>7255</td>
<td>1546</td>
<td>2962</td>
<td>2534</td>
<td>231</td>
<td>0</td>
</tr>
<tr>
<td>Agosto</td>
<td>4268</td>
<td>6162</td>
<td>7840</td>
<td>1580</td>
<td>3974</td>
<td>2716</td>
<td>592</td>
<td>812</td>
</tr>
<tr>
<td>Septiembre</td>
<td>5894</td>
<td>11495</td>
<td>6799</td>
<td>3412</td>
<td>3191</td>
<td>4448</td>
<td>3412</td>
<td>3390</td>
</tr>
<tr>
<td>Octubre</td>
<td>7982</td>
<td>9881</td>
<td>9560</td>
<td>4872</td>
<td>5389</td>
<td>5953</td>
<td>4868</td>
<td>4097</td>
</tr>
<tr>
<td>Noviembre</td>
<td>8458</td>
<td>8784</td>
<td>7418</td>
<td>6858</td>
<td>6819</td>
<td>5680</td>
<td>7106</td>
<td>5469</td>
</tr>
<tr>
<td>Diciembre</td>
<td>8629</td>
<td>5349</td>
<td>7489</td>
<td>7141</td>
<td>7167</td>
<td>6689</td>
<td>7421</td>
<td>5349</td>
</tr>
</tbody>
</table>

| Anual   | 84102  | 92523  | 95247     | 52308      | 64846    | 49748      | 50753  | 42113     |
| Máxima  | 10033  | 11495  | 9851      | 7915       | 8799     | 6689       | 8449   | 6782      |
10.4 Comportamiento de los TABS por zona climática

Para realizar un análisis del comportamiento de los TABS en las distintas zonas climáticas de Chile, se presenta una muestra con semanas características correspondientes a cada período del año: invierno, verano y un periodo de transición.

10.4.1 Huasco

![Gráfico a)](image1)

![Gráfico b)](image2)
Figura 10.1 Simulación de Temperatura del aire interior en Huasco para los períodos a) verano b) transición c) invierno

10.4.2 Calama
Figura 10.2 Simulación de Temperatura del aire interior en Calama para los períodos a) verano b) transición c) invierno
10.4.3 Salamanca

a)

b)
Figura 10.3 Simulación de Temperatura del aire interior en Salamanca para los períodos a) verano b) transición c) invierno

10.4.4 Valparaíso
Figura 10.4 Simulación de Temperatura del aire interior en Valparaíso para los períodos a) verano b) transición c) invierno
10.4.5 Santiago

![Graph a)

![Graph b)
c)

Figura 10.5 Simulación de Temperatura del aire interior en Santiago para los períodos a) verano b) transición c) invierno

10.4.6 Puerto Montt

a)
Figura 10.6 Simulación de Temperatura del aire interior en Puerto Montt para los períodos a) verano b) transición c) invierno
## 10.4.7 Temuco

![Graph a)](image)

![Graph b)](image)
Figura 10.7 Simulación de Temperatura del aire interior en Temuco para los períodos a) verano b) transición c) invierno

10.4.8 Coyhaique
Figura 10.8 Simulación de Temperatura del aire interior en Coyhaique para los períodos a) verano b) transición c) invierno
10.5 Tasa de infiltración según normativa chilena e internacional

Tabla 10.7 Tasa de infiltración de aire máxima a 50 Pa

<table>
<thead>
<tr>
<th>Zona Térmica</th>
<th>Clase de infiltración de aire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 Pa</td>
</tr>
<tr>
<td></td>
<td>ACH</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>6,00</td>
</tr>
<tr>
<td>C</td>
<td>9,00</td>
</tr>
<tr>
<td>D</td>
<td>8,00</td>
</tr>
<tr>
<td>E</td>
<td>8,00</td>
</tr>
<tr>
<td>F</td>
<td>7,00</td>
</tr>
<tr>
<td>G</td>
<td>4,00</td>
</tr>
<tr>
<td>H</td>
<td>6,00</td>
</tr>
<tr>
<td>I</td>
<td>4,00</td>
</tr>
</tbody>
</table>

Tabla 10.8 Exigencias europeas para infiltraciones de aire [25]

<table>
<thead>
<tr>
<th>País</th>
<th>Tipología</th>
<th>Tasa de infiltración máxima a 50 Pa (Vol/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemania</td>
<td>Viviendas con ventilación natural</td>
<td>3,0</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Edificios Alta estanquidad</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>Edificios Media estanquidad</td>
<td>Entre 2,0 y 5,0</td>
</tr>
<tr>
<td></td>
<td>Edificios Baja estanquidad</td>
<td>Mayor a 5,0</td>
</tr>
<tr>
<td>Francia</td>
<td>Otros tipos de vivienda</td>
<td>5,3</td>
</tr>
<tr>
<td>Letonia</td>
<td>Viviendas en general</td>
<td>2,5</td>
</tr>
<tr>
<td>Noruega</td>
<td>Viviendas en general</td>
<td>3,0</td>
</tr>
<tr>
<td>Portugal</td>
<td>Viviendas en general</td>
<td>0,6</td>
</tr>
</tbody>
</table>