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LG E R Implementation of the CBG model as a robot controller
For artificial intelligent agents Proposal
> Several models of the human's decision making system has been proposed. » Exploration-exploitation trade-off is fundamental. » Integration of tonic DA effects in a multiple loop selection model. . . . . . :
Multiple loop models explain separable selections from electrophysiologic data. . . . . - | g del i h I | Using the CBG model as a decision making mechanism Newa,lternatlves
» Dopamine has been related to the exploration-exploitation trade-off. > The mFegratlon of emotions might be a great benefit in terms of; g ntegrateF = Mote |.n a0 OF co.ntro er 1o » The model is integrated in a robot controller. . ' Time to decide again K
Pa © as. cen related to the € po.a © .e pIo ? © .a € O_ ® |earning processes. ® control its exploration-exploitation trade-off. _ _ o _ Percelve 1= _ | ee%p
> Striatal dopamine receptors are reduced in patients with anxiety disorders. o interaction with humans and the environment. o indirectly integrate an emotional related effect. » The robot has to learn on-line which option is better for its current state. CBG o on action
The robot controller Reset .
Cortico-Basal Ganglia (CBG) model » Implemented as a finite state machine. ) DeC]_de CBG
From Guthrie et al. (2013) 1. Perceive: detects the environment and then, the robot's possible actions. | end of action m Decision
2. Decide: performs a selection using the CBG model. Time
> Considerates two competing pa thways: External synapses from sensory populations 3 Execute: controls the robot movements. step 1 ansgigon
® Direct pathway: focussed positive feedback 1 1 | 4. Evaluate: performs the rewarding evaluation and learns.

About the implementation

- - Bxcente
» The system is tested using the Virtual Robot Experimentation Platform. it for better? 5
FEvaluate « -

Cortex — Subthalamic nucleus — Globus pallidus (internal) — Thalamus <> Cortex ® Performs all the physics related calculations. Continue with |
o ® Can be controlled by an external software using a ready to use API (Application Programming a new decision . 8 CBG Keep
» Multiple parallel loops implementation: a Cognitive and a M otor loop on doing |
® Symmetrical. ,
e Two distinguishable selections. | &£ N L N AN N g

Reward
® Crosstalk between loops in the striatal associative populations.

Cortex — Striatum — Globus pallidus (internal) — Thalamus <+ Cortex

® Hyper-direct pathway: spread negative feedback

Interface).

» Populations are simulated using a simple neural rate model, considerating:

@ Two-source survival task Tonic DA level effects in the robot’s performance

dm(t) _ _ o . » Minimal scenario for evaluating decision Effects in the total time being alive.
T3~ = —m(t) + n(t)  7: decay time constant. m;(t): synaptic output activity. . making mechanisms DA=0.5 DA=1.0 DA=1.5 DA =2.0
p(t) = SI*(t) —T) pi(t): instantaneous activity.  S(+): transfer function Cognitive * Motor . — — . e — | | | |
o D . R
T 160 o » The agent has two intrinsic energy levels:
I (t): synaptic input. T threshold. b___ v _.100P _ _ [l 5 100 | | 100 | 100 | 100,
. . . Y - ® Potential energy PE: a food like energy . T . N °
o T.hresh.old linear transfer. functlons. for almost a.II populations. \\J/.\¥j level. & 50 | =0 | | 50 50
© Slgmo-ldal tr.ans.fer function for str.latal_ populations. | | | o Vital energy V E: decreases in time of] | - _ B O 0 0
- . it; . . ' & ' -
° Gauss_"a” NoOISE 15 -added t‘_’ _Sy”apt'_cal '”_p“ts' proportional to the inputs amplitude. Hxctatory  ——— 1:1 Focused O Cognitive ensembles leading to death. Its acquisition requires | . | 0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
» Dopaminergic learning modifies corticostriatal synapses. Inhibitory =~ ——¢ 1:% Divergent O Motor ensembles potential energy. E' s pa. s B Time alive [s]
® Learning based in reward. e ' = R ’ ' |
° - - : : - —{DA} F_E«gélelzf)tgé — *:1 Convergent O Associative ensembles > To reload its energy levels, the robot has to | “ o i s 2. "r'.'}‘ . . o0 | | | | |
® Rewarded selections strengthen its corticostriatal connections. . 4 be placed in an energy source. - T —— -
O Non—rewa.rded selections attenu.ate them instead. | ® Two energy sources are considered for |
—> Learning leads to the selection of the better option. each energy type. | : o )
Dopamine dependence in striatal transfer function ( f Reload _ : ; _
Tonic dopamine (DA) integration 20 | | | | - —— XPE 1 etoadve R ——— | . =
AVE =<{0.5-ayg if Rest e ’ | | | DA =0.0 DA =05 DA=1.0 DA =15 DA =20
Tonic dopamine type D1 has a strong effect in terms of | OVE Otherwise g =
. . . . f . U
the control of the exploration-exploitation trade off (Humpbhries et al., 2012). ) 1o 1= N —apg if Reloadyg ———— —— . —
— DA: 0.0 APE = { apg if Reloadpg . . ] ) )
» Affects cognitive and motor corticostriatal synapses g oo 0 Otherwise Vartual scenario 0.5 Effects in the selection of each action
. N DA: 1.0 \ :
£ 10 | -
» Simulates D1- multiplicative factor: : DA: 1.5 4 -
Simulates type as a multip catTe acto = DA: 2.0 Fqg 8 ; 32.0% 30-_3% 28.9% 28.1% 27.3%
I"(t) =(1+ DA) I(t £ DA: 2.5 ol -
() = (1 + ) I(t) 5 L ) Agent: the MODI robot 5 0.2 -
» Tonic DA also modifies the threshold V}, and slope V,. of the striatum: B 0.1L _
Vi =Vp,, DA+ 18.5 V.=3.0(1+ DA) » MODI (MODular Intelligent) is a compact open-hardware 0
» Cognitive and motor inputs noise is modified as: 0, (') : P 4'0 6'0 8'0 1(')0 o sensorless robot.
o Has constant variance. Input activity [Hz] > I\/Iadc-e v§/|th wireless capabilities for swarm robotics applications. 82
® Presents temporal correlation. > Proximity sensors where attached. - 0'3 28.6% 27.1% 27.2% 26.6% 29.1%
» Virtual sensing of the energy sources is considered. $ 0.2 - - -
Experimental evaluation - Performing a two-choice forced selection task Learning results ® The robot instantaneously knows the position of any energy = 0‘1 i -
source inside a range of vision. .O
' Possible positi : : . .
szselbljtizs 08D ¢ bosTons 1 Effects in the learning performance » Reward conditions prioritized from top to bottom
- rnativ | | | | | | | | | | |
Trials _ _ 0.9 Seeking behaviour Activation Reward condition . 0.5
» Selection between four different shapes. A o Q + 08 PE PE < 0.2 | Is the robot closer to V E,? ks E 04 L _
® Reward probabilities: o 07 seeker § < 0.3 | -
A selecti be mad S ?
0/3 1/3 2/3 3/3 T selection can be made . § 0 :/eiker VE < 0.5 |Is the robot closer to PE: % g 02 L 10.1% 19.1% 13.3% 13.9% 13.3% i
| S . . * 0 _ ' - _
oty Al Al Al el e et ot dser 0 thr V., PE = & O - [T RN e
simultaneously. = 04 e 0
_ o . » Agent capabilities:
» Four possible positions. | | | | | | | | > = 03 _ - _
_ _ | | | | | | | C Time ms| Motor actions Cognitive alternatives 0.5
> Selection has to be made in 2.5 [8] 0 500 1000 1500 2000 2500 3000 3500 0.2 forward | Move forward. Wander | The agent randomly selects and executes a [ 0.4
Trial  C Starts  Trial = -
stI;?t preslellel?:ed restinagtsime ell;llg 01 DA: 0.5 DA: 1.0 DA: 1.5 DA: 2.0 DA: 2.5 | m(;viment be.tV;f:n forward, turn_le‘ft % 0.3 | _
0 I I I I I I I and turn_right. ‘
qv)
20 40 60 80 100 1112.01 140 160 180 200 220 240 turn_left | Turn left maintaining its position. Rest Reduce vital energy consumption executing the Q 0.2 11.6% 13.2% 13.97% 14.3% 13.87% ‘
o <V ] T I R
y 5 P Effects in the final probability of selection turn_right | Turn right maintaining its position. Wall,, | Avoid collisions with walls. Depending on 0
jZ- — ICognitiveICortex_ jZ- — ICognitiveICortex_ jz_ — ICognitiveICortex_ 1 | | Where iS the Wa“ Placed, the agent turnS or
— " IV!otor\Cortex T Mot_or Cortex _ - Motor C‘ortex . 3 & Bl moves away. O 5
> ) > 0.8 N I Cue 0 over 1 : : : : )
5 50| ) 2 50| 5 50| & B Cuc 0 over 2 rest Stop its movements in order to reduce to the | Reloady g Has the goal to increase its V E level. The .04 L i
2 40} 2 40} 2 40 = 0.6 1 ~ | [ Cue 0 over 3 half its vital energy consumption ratio. agent moves closer to a V' E4 turning or mov- % '
£ 30| J/\ £ 30| £ 30 f§ o =gueio"er§ ing forward, or, if the agent is close enough, . 0.3 |- -
20 ) . 20 A 20 & o N ue L over = _ —
I A 2 ] Cue 2 over 3 reload. < 0.2
12' | | | | | | 12' | | | | | Y] 12' | | | | | 7 0.2 | | ] Total reload  Without physical response, reload energy while| | Reloadpg | Similarly as Reloady g, the agent acts in or- B 0.1 F 7.27 73% 7.37% 7.77% 7.37% —
being above a source. der to increase its PE level T [T DT T
presented Init ITI presented Init ITI presented Init ITI 0 ‘ O
Time [seconds] Time [seconds] Time [seconds] . . 1 0 1 . 5
DA = 0.0 DA = 0.5 DA =1.0 Tonic DA level
& —— o0 — 50 — Entropy of selection after learnin Conclusions
Py 8
20 — Cognitive Cortexr ol — Cognitive Cortexr ol — Cognitive Cortexr 03 | | | | | |
- Motor Cortex - - Motor Cortex - - Motor Cortex — =
" - e ? T - -+ — , _ About the robot controller implementation
75 75 75 Z 061 = - + == == 1 i gggz{ggg About the tonic DA effects in the CBG loop P
g4 2 o g4 = \ H(g=[0,3]) _ _ _ » The controller implementation shows the factibility of using the proposed CBG model as a decision making mechanism
£ 30 £ 30f £ 30} 2 o0u L — = _ H(g=[1,2]) » The presented model is able to correctly perform a selection and, among trials, learn. . . .
N N N S \ ‘ H(g=[1,3]) . Ab | _ in an artificial intelligent agent.
, = L o H(g=[2,3 out learning: . . . L
19 v 0] 10 = ool \ F———— = . Hg)[ ’ 1 fon; gDA q | ol t _ " » The system is able to learn on-line its best option, given its current energy levels.
3% 05 1.0 15 2.0 25 3.0 3.5 3% 05 1.0 15 2.0 25 3.0 3.5 8% 05 1.0 15 2.0 25 3.0 3.5 ® [Lower tonic roauces a Iower signal to noise ratio. i . i i . i i i
e Tral stop e Tral stop e Tral stop i . proctt . ' . » Tonic DA controls the agent’s exploration-exploitation trade-off. Direct related to its tonic DA level, the agent
Time [seconds] Time [seconds] Time [seconds] 0 l — * ‘ FOI’ IOWGF Slgnal tO nO|Se ratIOS, n0|se |eadS the SeleCthnS . df t b blt f | t 'F t b tt t.
0.0 0.5 1.0 1.5 2.0 2.5 . . L . . modifies its probability of selection of its better option.
DA =1.5 DA =2.0 DA =25 Tonic DA level ® There is a tonic DA range with direct relation with performance. P Y P

® modifies its surviving skills.
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