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Introduction

I Several models of the human’s decision making system has been proposed.
Multiple loop models explain separable selections from electrophysiologic data.

I Dopamine has been related to the exploration-exploitation trade-off.

I Striatal dopamine receptors are reduced in patients with anxiety disorders.

For artificial intelligent agents

I Exploration-exploitation trade-off is fundamental.

I The integration of emotions might be a great benefit in terms of:
• learning processes.
• interaction with humans and the environment.

Proposal
I Integration of tonic DA effects in a multiple loop selection model.

I Integrate the model in a robot controller to:
• control its exploration-exploitation trade-off.
• indirectly integrate an emotional related effect.

Cortico-Basal Ganglia (CBG) model

From Guthrie et al. (2013)

I Considerates two competing pathways:
• Direct pathway: focussed positive feedback

Cortex→ Striatum→ Globus pallidus (internal)→ Thalamus↔ Cortex

• Hyper-direct pathway: spread negative feedback

Cortex→ Subthalamic nucleus→ Globus pallidus (internal)→ Thalamus↔ Cortex

I Multiple parallel loops implementation: a Cognitive and a Motor loop
• Symmetrical.
• Two distinguishable selections.
• Crosstalk between loops in the striatal associative populations.

I Populations are simulated using a simple neural rate model, considerating:

τ dm(t)
dt

= −m(t) + µ(t)
µ(t) = S(IT(t)− T )

τ : decay time constant. mi(t): synaptic output activity.
µi(t): instantaneous activity. S(·): transfer function
IT(t): synaptic input. T : threshold.

• Threshold linear transfer functions for almost all populations.
• Sigmoidal transfer function for striatal populations.
• Gaussian noise is added to synaptical inputs, proportional to the inputs amplitude.

I Dopaminergic learning modifies corticostriatal synapses.
• Learning based in reward.
• Rewarded selections strengthen its corticostriatal connections.
• Non-rewarded selections attenuate them instead.
⇒ Learning leads to the selection of the better option.

Tonic dopamine (DA) integration

Tonic dopamine type D1 has a strong effect in terms of
the control of the exploration-exploitation trade off (Humphries et al., 2012).

I Affects cognitive and motor corticostriatal synapses.

I Simulates D1-type as a multiplicative factor:

IT(t) = (1 +DA) I(t)

I Tonic DA also modifies the threshold Vh and slope Vc of the striatum:

Vh = VhDA DA+ 18.5 Vc = 3.0 (1 +DA)

I Cognitive and motor inputs noise is modified as:

• Has constant variance.
• Presents temporal correlation.
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Experimental evaluation - Performing a two-choice forced selection task

Trials
I Selection between four different shapes.
• Reward probabilities:

0/3 1/3 2/3 3/3

I Two different shapes presented
simultaneously.

I Four possible positions.
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Learning results

Effects in the learning performance
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Implementation of the CBG model as a robot controller

Using the CBG model as a decision making mechanism
I The model is integrated in a robot controller.

I The robot has to learn on-line which option is better for its current state.

The robot controller
I Implemented as a finite state machine.

1. Perceive: detects the environment and then, the robot’s possible actions.
2. Decide: performs a selection using the CBG model.
3. Execute: controls the robot movements.
4. Evaluate: performs the rewarding evaluation and learns.

About the implementation
I The system is tested using the Virtual Robot Experimentation Platform.
• Performs all the physics related calculations.
• Can be controlled by an external software using a ready to use API (Application Programming

Interface).
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Two-source survival task

I Minimal scenario for evaluating decision
making mechanisms.

I The agent has two intrinsic energy levels:
• Potential energy PE: a food like energy

level.
• Vital energy V E: decreases in time

leading to death. Its acquisition requires
potential energy.

I To reload its energy levels, the robot has to
be placed in an energy source.
• Two energy sources are considered for

each energy type.

∆V E =


αPE if ReloadV E

0.5 · αV E if Rest

αV E Otherwise

∆PE =


−αPE if ReloadV E

αPE if ReloadPE

0 Otherwise
V irtual scenario

Agent: the MODI robot

I MODI (MODular Intelligent) is a compact open-hardware
sensorless robot.

I Made with wireless capabilities for swarm robotics applications.

I Proximity sensors where attached.

I Virtual sensing of the energy sources is considered.
• The robot instantaneously knows the position of any energy

source inside a range of vision.

I Reward conditions prioritized from top to bottom

Seeking behaviour Activation Reward condition
PE
seeker

PE ≤ 0.2 Is the robot closer to V Es?

VE
seeker

VE ≤ 0.5 Is the robot closer to PEs?

Both Otherwise Is the robot closer to either V Es or PEs?

I Agent capabilities:

Motor actions Cognitive alternatives
forward Move forward. Wander The agent randomly selects and executes a

movement between forward, turn left
and turn right.

turn left Turn left maintaining its position. Rest Reduce vital energy consumption executing the
rest motor movement.

turn right Turn right maintaining its position. Wallav Avoid collisions with walls. Depending on
where is the wall placed, the agent turns or
moves away.

rest Stop its movements in order to reduce to the
half its vital energy consumption ratio.

ReloadV E Has the goal to increase its V E level. The
agent moves closer to a V Es turning or mov-
ing forward, or, if the agent is close enough,
reload.

reload Without physical response, reload energy while
being above a source.

ReloadPE Similarly as ReloadV E, the agent acts in or-
der to increase its PE level.

Tonic DA level effects in the robot’s performance

Effects in the total time being alive.
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Conclusions

About the tonic DA effects in the CBG loop

I The presented model is able to correctly perform a selection and, among trials, learn.

I About learning:
• Lower tonic DA produces a lower signal to noise ratio.
• For lower signal to noise ratios, noise leads the selections.
• There is a tonic DA range with direct relation with performance.

About the robot controller implementation

I The controller implementation shows the factibility of using the proposed CBG model as a decision making mechanism
in an artificial intelligent agent.

I The system is able to learn on-line its best option, given its current energy levels.

I Tonic DA controls the agent’s exploration-exploitation trade-off. Direct related to its tonic DA level, the agent
• modifies its probability of selection of its better option.
• modifies its surviving skills.
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