Repositorio Digital USM

https://repositorio.usm.cl

Tesis USM

TESIS de Pregrado de acceso ABIERTO

2016

MECANISMO DE TOMA DE DECISIONES EMOCIONAL BIOINSPIRADO APLICADO COMO CONTROLADOR DE UN AGENTE AUTÓNOMO

NETTLE VACHER, CRISTÓBAL JESÚS

Universidad Técnica Federico Santa María

http://hdl.handle.net/11673/13642 Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

EX UMBRA IN SOLEM UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Improving surviving: tonic dopamine control improves bio-inspired robot controller behaviour in a simple survival task

¹ Department of Electronics Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile; ² CNRS, Laboratoire de neurophysique et physiologie, UMR 8119, Université Paris Descartes, Paris, France; ³ Innovación y Robótica Estudiantil, UTFSM, Chile.

Introduction

- Several models of the human's decision making system has been proposed.
- Multiple loop models explain separable selections from electrophysiologic data.
- Dopamine has been related to the exploration-exploitation trade-off. Striatal dopamine receptors are reduced in patients with anxiety disorders.
- For artificial intelligent agents
- Exploration-exploitation trade-off is fundamental.

 $m_i(t)$: synaptic output activity.

Possible positions

2

Starts

resting time end

Tria

Time [ms]

T: threshold.

- The integration of emotions might be a great benefit in terms of:
- learning processes.
- interaction with humans and the environment.

Cortico-Basal Ganglia (CBG) model

- Considerates two competing pathways:
- Direct pathway: focussed positive feedback
- $Cortex \rightarrow Striatum \rightarrow Globus pallidus (internal) \rightarrow Thalamus \leftrightarrow Cortex$
- Hyper-direct pathway: spread negative feedback
- Cortex \rightarrow Subthalamic nucleus \rightarrow Globus pallidus (internal) \rightarrow Thalamus \leftrightarrow Cortex
- Multiple parallel loops implementation: a Cognitive and a Motor loop
- Symmetrical.
- Two distinguishable selections.
- Crosstalk between loops in the striatal associative populations.
- Populations are simulated using a simple neural rate model, considerating:

$$egin{aligned} & aurac{dm(t)}{dt} = -m(t) + \mu(t) \ &\mu(t) = S(I^T(t) - T) \end{aligned}$$

au: decay time constant. $\mu_i(t)$: instantaneous activity. $S(\cdot)$: transfer function $I^{T}(t)$: synaptic input.

- Threshold linear transfer functions for almost all populations.
- Sigmoidal transfer function for striatal populations.
- Gaussian noise is added to synaptical inputs, proportional to the inputs amplitude.
- Dopaminergic learning modifies corticostriatal synapses.
- Learning based in reward.
- Rewarded selections strengthen its corticostriatal connections.
- Non-rewarded selections attenuate them instead.
- \Rightarrow Learning leads to the selection of the better option.

Tonic dopamine (DA) integration

Tonic dopamine type D1 has a strong effect in terms of the control of the exploration-exploitation trade off (Humphries et al., 2012).

- Affects cognitive and motor corticostriatal synapses.
- Simulates D1-type as a multiplicative factor:

$I^{T}(t) = (1 + DA) I(t)$

Possible cues

Alternatives

A selection can be made

- \blacktriangleright Tonic DA also modifies the threshold V_h and slope V_c of the striatum:
- $V_h = V_{h_{DA}} \; DA + 18.5 \qquad V_c = 3.0 \; (1 + DA)$
- Cognitive and motor inputs noise is modified as:
- Has constant variance.
- Presents temporal correlation.

Experimental evaluation - Performing a two-choice forced selection task

Trials

- Selection between four different shapes. Reward probabilities:
- 0/3 1/32/3
- 3/3Two different shapes presented simultaneously.
- Four possible positions.
- \blacktriangleright Selection has to be made in 2.5 [s].

Trial Cues start presented

- Proposal
 - Integration of tonic DA effects in a multiple loop selection model.
 - Integrate the model in a robot controller to:
 - control its exploration-exploitation trade-off. • indirectly integrate an emotional related effect.

Learning results

Cristóbal Nettle^{1,3}, María-Jose Escobar¹ and Arthur Leblois².

mplementation of the CBG model as a robot controller

Using the CBG model as a decision making mechanism

- The model is integrated in a robot controller.
- ► The robot has to learn on-line which option is better for its current state.

The robot controller

- Implemented as a finite state machine.
- 1. Perceive: detects the environment and then, the robot's possible actions.
- 2. Decide: performs a selection using the CBG model.
- 3. Execute: controls the robot movements.
- 4. Evaluate: performs the rewarding evaluation and learns.

About the implementation

- The system is tested using the Virtual Robot Experimentation Platform.
- Performs all the physics related calculations.
- Can be controlled by an external software using a ready to use API (Application Programming Interface).

Two-source survival task

- Minimal scenario for evaluating decision making mechanisms.
- The agent has two intrinsic energy levels:
- Potential energy PE: a food like energy level. • Vital energy VE: decreases in time
- leading to death. Its acquisition requires potential energy.
- To reload its energy levels, the robot has to be placed in an energy source.
- Two energy sources are considered for each energy type.

	α_{PE}	if $Reload_V$
$\Delta VE = \langle$	$0.5\cdot lpha_V$	r_E if $Rest$
	α_{VE}	Otherwise
	$\left(-\alpha_{PE}\right)$	if $Reload_{VE}$
$\Delta PE = \langle$	$lpha_{PE}$	if $Reload_{PE}$
	0	Otherwise

Virtual scenario

Agent: the MODI robot

- MODI (MODular Intelligent) is a compact open-hardware sensorless robot.
- Made with wireless capabilities for swarm robotics applications.
- Proximity sensors where attached.
- Virtual sensing of the energy sources is considered.
- The robot instantaneously knows the position of any energy source inside a range of vision.
- Reward conditions prioritized from top to bottom

Seeking beh	aviour Activation	Reward co	ondition	
PE	$PE \le 0.2$	Is the robot closer to	VE_s ?	
seeker				
VE	$VE \le 0.5$	Is the robot closer to	PE_s ?	
seeker				
Both	Otherwise	Is the robot closer to ei	ither VE_s or PE_s	?
Agent capab	oilities:			
Motor actions			Cognitive alternatives	
forward Move forward.			Wander	The agent randomly selects and executes a
				movement between forward, turn_left
				and $turn_right$.
$turn_left$ Turn left maintainin		g its position.	Rest	Reduce vital energy consumption executing the
				rest motor movement.
$turn_right$	Turn right maintain	ng its position.	$Wall_{av}$	Avoid collisions with walls. Depending on
				where is the wall placed, the agent turns or
				moves away.

Stop its movements in order to reduce to the $Reload_{VE}$ Has the goal to increase its VE level. The agent moves closer to a VE_s turning or moving forward, or, if the agent is close enough, reload Without physical response, reload energy while $Reload_{PE}$ Similarly as $Reload_{VE}$, the agent acts in or-

der to increase its PE level.

Conclusions

rest

About the tonic DA effects in the CBG loop

- ► The presented model is able to correctly perform a selection and, among trials, learn.
- About learning:
- Lower tonic DA produces a lower signal to noise ratio.
- For lower signal to noise ratios, noise leads the selections.

half its vital energy consumption ratio.

being above a source.

• There is a tonic DA range with direct relation with performance.

The controller implementation shows the factibility of using the proposed CBG model as a decision making mechanism in an artificial intelligent agent.

About the robot controller implementation

► The system is able to learn on-line its best option, given its current energy levels.

► Tonic DA controls the agent's exploration-exploitation trade-off. Direct related to its tonic DA level, the agent modifies its probability of selection of its better option. modifies its surviving skills.